354edo: Difference between revisions
→Theory: expand, a bit of paragraph sectioning |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 16: | Line 16: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{ | {{comma basis begin}} | ||
|- | |- | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 32805/32768, 118098/117649, 250047/250000 | | 32805/32768, 118098/117649, 250047/250000 | ||
| {{mapping| 354 561 822 994 }} | | {{mapping| 354 561 822 994 }} | ||
| | | −0.0319 | ||
| 0.1432 | | 0.1432 | ||
| 4.23 | | 4.23 | ||
Line 36: | Line 28: | ||
| 540/539, 4000/3993, 32805/32768, 137781/137500 | | 540/539, 4000/3993, 32805/32768, 137781/137500 | ||
| {{mapping| 354 561 822 994 1225 }} | | {{mapping| 354 561 822 994 1225 }} | ||
| | | −0.0963 | ||
| 0.1817 | | 0.1817 | ||
| 5.36 | | 5.36 | ||
Line 43: | Line 35: | ||
| 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213 | | 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213 | ||
| {{mapping| 354 561 822 994 1225 1310 }} | | {{mapping| 354 561 822 994 1225 1310 }} | ||
| | | −0.0871 | ||
| 0.1671 | | 0.1671 | ||
| 4.93 | | 4.93 | ||
Line 50: | Line 42: | ||
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095 | | 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095 | ||
| {{mapping| 354 561 822 994 1225 1310 1447 }} | | {{mapping| 354 561 822 994 1225 1310 1447 }} | ||
| | | −0.0791 | ||
| 0.1559 | | 0.1559 | ||
| 4.60 | | 4.60 | ||
Line 57: | Line 49: | ||
| 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520 | | 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520 | ||
| {{mapping| 354 561 822 994 1225 1310 1447 1504 }} | | {{mapping| 354 561 822 994 1225 1310 1447 1504 }} | ||
| | | −0.0926 | ||
| 0.1509 | | 0.1509 | ||
| 4.43 | | 4.43 | ||
{{comma basis end}} | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
Note: 5-limit temperaments supported by [[118edo|118et]] are not included. | Note: 5-limit temperaments supported by [[118edo|118et]] are not included. | ||
{ | {{rank-2 begin}} | ||
|- | |- | ||
| 2 | | 2 | ||
| 128\354<br>(49\354) | | 128\354<br />(49\354) | ||
| 433.90<br>(166.10) | | 433.90<br />(166.10) | ||
| 9/7<br>(11/10) | | 9/7<br />(11/10) | ||
| [[Pogo]] | | [[Pogo]] | ||
|- | |- | ||
| 3 | | 3 | ||
| 147\354<br>(29\354) | | 147\354<br />(29\354) | ||
| 498.31<br>(98.31) | | 498.31<br />(98.31) | ||
| 4/3<br>(18/17) | | 4/3<br />(18/17) | ||
| [[Term (temperament)|Term]] / terminator | | [[Term (temperament)|Term]] / terminator | ||
|- | |- | ||
| 6 | | 6 | ||
| 64\354<br>(5\354) | | 64\354<br />(5\354) | ||
| 216.95<br>(16.95) | | 216.95<br />(16.95) | ||
| 17/15<br>(245/243) | | 17/15<br />(245/243) | ||
| [[Stearnscape]] | | [[Stearnscape]] | ||
|- | |- | ||
| 6 | | 6 | ||
| 147\354<br>(29\354) | | 147\354<br />(29\354) | ||
| 498.31<br>(98.31) | | 498.31<br />(98.31) | ||
| 4/3<br>(18/17) | | 4/3<br />(18/17) | ||
| [[Semiterm]] | | [[Semiterm]] | ||
|- | |- | ||
| 118 | | 118 | ||
| 167\354<br>(2\354) | | 167\354<br />(2\354) | ||
| 566.101<br>(6.78) | | 566.101<br />(6.78) | ||
| 165/119<br>(?) | | 165/119<br />(?) | ||
| [[Oganesson]] | | [[Oganesson]] | ||
{{rank-2 end}} | |||
{{orf}} | |||
[[Category:Stearnscape]] | [[Category:Stearnscape]] |
Revision as of 04:40, 16 November 2024
← 353edo | 354edo | 355edo → |
Theory
354edo is enfactored in the 5-limit, with the same tuning as 118edo, defined by tempering out the schisma and the parakleisma, but the approximation to higher harmonics are much improved.
In the 7-limit, the equal temperament tempers out 118098/117649 (stearnsma), 250047/250000 (landscape comma), and 703125/702464 (meter); in the 11-limit, 540/539, and 4000/3993; in the 13-limit, 729/728, 1575/1573, 1716/1715, 2080/2079, 4096/4095, and 4225/4224. In the 13-limit, particularly 2.3.5.13 subgroup, one should consider peithoian, as it preserves 5-limit tuning of 118edo while also improving the first harmonic 118edo tunes inconsistently.
354edo provides the optimal patent val for stearnscape, the 72 & 282 temperament, and 13- and 17-limit terminator, the 171 & 183 temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.26 | +0.13 | +0.67 | +1.22 | +0.15 | +0.13 | +0.79 | -1.16 | +0.93 | +0.73 |
Relative (%) | +0.0 | -7.7 | +3.7 | +19.6 | +36.1 | +4.4 | +3.8 | +23.4 | -34.1 | +27.5 | +21.5 | |
Steps (reduced) |
354 (0) |
561 (207) |
822 (114) |
994 (286) |
1225 (163) |
1310 (248) |
1447 (31) |
1504 (88) |
1601 (185) |
1720 (304) |
1754 (338) |
Subsets and supersets
Since 354 factors into 2 × 3 × 59, 354edo has subset edos 2, 3, 6, 59, 118, and 177.
Regular temperament properties
Template:Comma basis begin |- | 2.3.5.7 | 32805/32768, 118098/117649, 250047/250000 | [⟨354 561 822 994]] | −0.0319 | 0.1432 | 4.23 |- | 2.3.5.7.11 | 540/539, 4000/3993, 32805/32768, 137781/137500 | [⟨354 561 822 994 1225]] | −0.0963 | 0.1817 | 5.36 |- | 2.3.5.7.11.13 | 540/539, 729/728, 1575/1573, 4096/4095, 31250/31213 | [⟨354 561 822 994 1225 1310]] | −0.0871 | 0.1671 | 4.93 |- | 2.3.5.7.11.13.17 | 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 4096/4095 | [⟨354 561 822 994 1225 1310 1447]] | −0.0791 | 0.1559 | 4.60 |- | 2.3.5.7.11.13.17.19 | 540/539, 729/728, 936/935, 969/968, 1156/1155, 1445/1444, 1521/1520 | [⟨354 561 822 994 1225 1310 1447 1504]] | −0.0926 | 0.1509 | 4.43 Template:Comma basis end
Rank-2 temperaments
Note: 5-limit temperaments supported by 118et are not included.
Template:Rank-2 begin
|-
| 2
| 128\354
(49\354)
| 433.90
(166.10)
| 9/7
(11/10)
| Pogo
|-
| 3
| 147\354
(29\354)
| 498.31
(98.31)
| 4/3
(18/17)
| Term / terminator
|-
| 6
| 64\354
(5\354)
| 216.95
(16.95)
| 17/15
(245/243)
| Stearnscape
|-
| 6
| 147\354
(29\354)
| 498.31
(98.31)
| 4/3
(18/17)
| Semiterm
|-
| 118
| 167\354
(2\354)
| 566.101
(6.78)
| 165/119
(?)
| Oganesson
Template:Rank-2 end
Template:Orf