157edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Adopt template: EDO intro; cleanup; -redundant categories
Cleanup
Line 3: Line 3:


== Theory ==
== Theory ==
157et tempers out 78732/78125 ([[sensipent comma]]) and {{monzo| 37 -16 -5 }} (quinticosiennic comma) in the 5-limit; [[2401/2400]], [[5120/5103]], and 110592/109375 in the 7-limit (supporting the [[hemififths]] and the [[catafourth]] temperaments). Using the [[patent val]], it tempers out [[176/175]], 1331/1323, 3773/3750 and [[8019/8000]] in the 11-limit; [[351/350]], [[352/351]], [[847/845]], [[1573/1568]], and [[2197/2187]] in the 13-limit.
157et [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 37 -16 -5 }} (quinticosiennic comma) in the 5-limit; [[2401/2400]], [[5120/5103]], and 110592/109375 in the 7-limit (supporting the [[hemififths]] and the [[catafourth]] temperaments). Using the [[patent val]], it tempers out [[176/175]], 1331/1323, 3773/3750 and [[8019/8000]] in the 11-limit; [[351/350]], [[352/351]], [[847/845]], [[1573/1568]], and [[2197/2187]] in the 13-limit.


=== Prime harmonics ===
=== Odd harmonics ===
{{Harmonics in equal|157}}
{{Harmonics in equal|157}}


Line 24: Line 24:
| 2.3
| 2.3
| {{monzo| 249 -157 }}
| {{monzo| 249 -157 }}
| [{{val| 157 249 }}]
| {{mapping| 157 249 }}
| -0.388
| -0.388
| 0.388
| 0.388
Line 31: Line 31:
| 2.3.5
| 2.3.5
| 78732/78125, {{val| 37 -16 -5 }}
| 78732/78125, {{val| 37 -16 -5 }}
| [{{val| 157 249 365 }}]
| {{mapping| 157 249 365 }}
| -0.760
| -0.760
| 0.614
| 0.614
Line 38: Line 38:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 5120/5103, 78732/78125
| 2401/2400, 5120/5103, 78732/78125
| [{{val| 157 249 365 441 }}]
| {{mapping| 157 249 365 441 }}
| -0.737
| -0.737
| 0.533
| 0.533
Line 45: Line 45:
| 2.3.5.7.11
| 2.3.5.7.11
| 176/175, 1331/1323, 2401/2400, 5120/5103
| 176/175, 1331/1323, 2401/2400, 5120/5103
| [{{val| 157 249 365 441 543 }}]
| {{mapping| 157 249 365 441 543 }}
| -0.532
| -0.532
| 0.629
| 0.629
Line 52: Line 52:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 176/175, 351/350, 847/845, 1331/1323, 2197/2187
| 176/175, 351/350, 847/845, 1331/1323, 2197/2187
| [{{val| 157 249 365 441 543 581 }}]
| {{mapping| 157 249 365 441 543 581 }}
| -0.454
| -0.454
| 0.600
| 0.600
Line 59: Line 59:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187
| 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187
| [{{val| 157 249 365 441 543 581 642 }}]
| {{mapping| 157 249 365 441 543 581 642 }}
| -0.461
| -0.461
| 0.556
| 0.556
Line 66: Line 66:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475
| 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475
| [{{val| 157 249 365 441 543 581 642 667 }}]
| {{mapping| 157 249 365 441 543 581 642 667 }}
| -0.420
| -0.420
| 0.531
| 0.531
Line 76: Line 76:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperament
! Temperament
|-
|-
Line 117: Line 117:
| [[Catafourth]]
| [[Catafourth]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct

Revision as of 08:56, 11 May 2024

← 156edo 157edo 158edo →
Prime factorization 157 (prime)
Step size 7.64331 ¢ 
Fifth 92\157 (703.185 ¢)
Semitones (A1:m2) 16:11 (122.3 ¢ : 84.08 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

157et tempers out 78732/78125 (sensipent comma) and [37 -16 -5 (quinticosiennic comma) in the 5-limit; 2401/2400, 5120/5103, and 110592/109375 in the 7-limit (supporting the hemififths and the catafourth temperaments). Using the patent val, it tempers out 176/175, 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; 351/350, 352/351, 847/845, 1573/1568, and 2197/2187 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 157edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +1.23 +3.50 +1.87 +2.46 -1.00 +0.24 -2.92 +2.05 +0.58 +3.10 -1.52
Relative (%) +16.1 +45.7 +24.5 +32.2 -13.1 +3.1 -38.2 +26.8 +7.5 +40.6 -19.9
Steps
(reduced)
249
(92)
365
(51)
441
(127)
498
(27)
543
(72)
581
(110)
613
(142)
642
(14)
667
(39)
690
(62)
710
(82)

Subsets and supersets

157edo is the 37th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [249 -157 [157 249]] -0.388 0.388 5.08
2.3.5 78732/78125, 37 -16 -5] [157 249 365]] -0.760 0.614 8.04
2.3.5.7 2401/2400, 5120/5103, 78732/78125 [157 249 365 441]] -0.737 0.533 6.98
2.3.5.7.11 176/175, 1331/1323, 2401/2400, 5120/5103 [157 249 365 441 543]] -0.532 0.629 8.24
2.3.5.7.11.13 176/175, 351/350, 847/845, 1331/1323, 2197/2187 [157 249 365 441 543 581]] -0.454 0.600 7.86
2.3.5.7.11.13.17 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 [157 249 365 441 543 581 642]] -0.461 0.556 7.28
2.3.5.7.11.13.17.19 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 [157 249 365 441 543 581 642 667]] -0.420 0.531 6.95

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperament
1 13\157 99.36 18/17 Quinticosiennic
1 23\157 175.80 72/65 Quadrafifths
1 46\157 351.59 49/40 Hemififths
1 56\157 428.03 2800/2187 Geb / osiris
1 58\157 443.31 162/125 Warrior
1 64\157 489.17 250/189 Catafourth

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct