4L 4s: Difference between revisions
m Modes |
m Reworded intro |
||
Line 10: | Line 10: | ||
{{MOS intro}} | {{MOS intro}} | ||
The minimum harmonic entropy scale with this [[MOS]] pattern is [[diminished]][8], | The minimum harmonic entropy scale with this [[MOS]] pattern is [[diminished]][8], the familiar [[octatonic scale]] of 12edo. | ||
In addition to the true MOS form, LsLsLsLs, there are four near-MOS forms – LLsLsLss, LLsLssLs, LLssLLss, and LLssLsLs – in which the period and its multiples are the only intervals with more than two varieties. The near-MOS forms are only proper if the dark generator is larger than 1\12 (100¢). | |||
== Modes == | == Modes == |
Revision as of 04:58, 18 February 2024
↖ 3L 3s | ↑ 4L 3s | 5L 3s ↗ |
← 3L 4s | 4L 4s | 5L 4s → |
↙ 3L 5s | ↓ 4L 5s | 5L 5s ↘ |
┌╥┬╥┬╥┬╥┬┐ │║│║│║│║││ ││││││││││ └┴┴┴┴┴┴┴┴┘
sLsLsLsL
4L 4s, named tetrawood in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 4 small steps, with a period of 1 large step and 1 small step that repeats every 300.0 ¢, or 4 times every octave. Generators that produce this scale range from 150 ¢ to 300 ¢, or from 0 ¢ to 150 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period. The minimum harmonic entropy scale with this MOS pattern is diminished[8], the familiar octatonic scale of 12edo.
In addition to the true MOS form, LsLsLsLs, there are four near-MOS forms – LLsLsLss, LLsLssLs, LLssLLss, and LLssLsLs – in which the period and its multiples are the only intervals with more than two varieties. The near-MOS forms are only proper if the dark generator is larger than 1\12 (100¢).
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
4|0(4) | 1 | LsLsLsLs |
0|4(4) | 2 | sLsLsLsL |
Scale tree
Generator | Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | ||||||||||
1\8 | 150.000 | 150.000 | 1 | 1 | 1.000 | ||||||
6\44 | 163.636 | 136.364 | 6 | 5 | 1.200 | Fourfives↑ | |||||
5\36 | 166.667 | 133.333 | 5 | 4 | 1.250 | ||||||
9\64 | 168.750 | 105.000 | 9 | 7 | 1.286 | ||||||
4\28 | 171.429 | 128.571 | 4 | 3 | 1.333 | ||||||
11\76 | 173.684 | 126.316 | 11 | 8 | 1.375 | ||||||
7\48 | 175.000 | 125.000 | 7 | 5 | 1.400 | ||||||
10\68 | 176.471 | 123.529 | 10 | 7 | 1.428 | ||||||
3\20 | 180.000 | 60.000 | 3 | 2 | 1.500 | L/s = 3/2 | |||||
11\72 | 183.333 | 116.667 | 11 | 7 | 1.571 | ||||||
8\52 | 184.615 | 115.385 | 8 | 5 | 1.600 | ||||||
13\84 | 185.714 | 114.286 | 13 | 8 | 1.625 | Golden diminished | |||||
5\32 | 187.500 | 112.500 | 5 | 3 | 1.667 | ||||||
12\76 | 189.474 | 110.526 | 12 | 7 | 1.714 | ||||||
7\44 | 190.909 | 109.091 | 7 | 4 | 1.750 | ||||||
9\56 | 192.857 | 107.143 | 9 | 5 | 1.800 | ||||||
2\12 | 200.000 | 100.000 | 2 | 1 | 2.000 | Basic tetrawood Diminished is optimal around here | |||||
9\52 | 207.692 | 92.308 | 9 | 4 | 2.250 | ||||||
7\40 | 210.000 | 90.000 | 7 | 3 | 2.333 | ||||||
12\68 | 211.765 | 88.235 | 12 | 5 | 2.400 | ||||||
5\28 | 214.286 | 85.714 | 5 | 2 | 2.500 | ||||||
13\72 | 216.667 | 83.333 | 13 | 5 | 2.600 | Unnamed golden tuning | |||||
8\44 | 218.182 | 81.818 | 8 | 3 | 2.667 | ||||||
11\60 | 220.000 | 80.000 | 11 | 4 | 2.750 | ||||||
3\16 | 225.000 | 75.000 | 3 | 1 | 3.000 | L/s = 3/1 | |||||
10\52 | 230.769 | 69.231 | 10 | 3 | 3.333 | ||||||
7\36 | 233.333 | 66.667 | 7 | 2 | 3.500 | ||||||
11\56 | 235.714 | 64.286 | 11 | 3 | 3.667 | ||||||
4\20 | 240.000 | 60.000 | 4 | 1 | 4.000 | ||||||
9\44 | 245.455 | 54.545 | 9 | 2 | 4.500 | ||||||
5\24 | 250.000 | 50.000 | 5 | 1 | 5.000 | ||||||
6\28 | 257.143 | 42.857 | 6 | 1 | 6.000 | Quadritikleismic↓ | |||||
1\4 | 300.000 | 0.000 | 1 | 0 | → inf |