362edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
-enfactored 362c val
Line 3: Line 3:


== Theory ==
== Theory ==
362et is only consistent to the [[5-odd-limit]], with three mappings possible for the [[7-limit]]:
362edo is [[enfactoring|enfactored]] in the [[3-limit]] and is only [[consistent]] to the [[5-odd-limit]], with two mappings possible for the [[7-limit]]:
* {{val|362 574 841 1016}} (patent val),
* {{val| 362 574 841 1016 }} (patent val),
* {{val|362 574 '''840''' 1016}} (362c),
* {{val| 362 574 841 '''1017''' }} (362d).
* {{val|362 574 841 '''1017'''}} (362d).


Using the patent val, it tempers out [[393216/390625]] and {{monzo|25 -48 22}} in the 5-limit; [[4375/4374]], [[458752/455625]] and 11529602/11390625 in the 7-limit, [[support]]ing [[barbados]].
Using the patent val, it tempers out [[393216/390625]] and {{monzo| 25 -48 22 }} in the 5-limit; [[4375/4374]], [[458752/455625]] and 11529602/11390625 in the 7-limit, [[support]]ing [[barbados]].


Using the 362c val, it tempers out [[2109375/2097152]] and {{monzo|14 -22 9}} in the 5-limit; [[2401/2400]], [[10976/10935]] and 390625/387072 in the 7-limit.
Using the 362d val, it tempers out 393216/390625 and {{monzo| 25 -48 22 }} in the 5-limit; [[5120/5103]], 118098/117649 and 1959552/1953125 in the 7-limit.
 
Using the 362d val, it tempers out 393216/390625 and {{monzo|25 -48 22}} in the 5-limit; [[5120/5103]], 118098/117649 and 1959552/1953125 in the 7-limit.


=== Odd harmonics ===
=== Odd harmonics ===
Line 18: Line 15:


=== Subsets and supersets ===
=== Subsets and supersets ===
362 factors into 2 × 181, with [[2edo]] and [[181edo]] as its subset edos. [[1448edo]], which quadruples it, gives a good correction to the harmonic 7.
Since 362 factors into 2 × 181, 372edo has [[2edo]] and [[181edo]] as its subsets. [[1448edo]], which quadruples it, is a strong full 13-limit system.  


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
! colspan="2" | Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.3
| 2.3.5
|{{monzo|287 -181}}
| 393216/390625, {{monzo| 25 -48 22 }}
|{{mapping|362 574}}
| {{mapping| 362 574 841 }}
| -0.2547
| 0.2547
| 7.68
|-
|2.3.5
|393216/390625, {{monzo|25 -48 22}}
|{{mapping|362 574 841}}
| -0.3896
| -0.3896
| 0.2822
| 0.2822
Line 55: Line 45:
! Temperaments
! Temperaments
|-
|-
|1
| 1
|117\362
| 117\362
|387.85
| 387.85
|5/4
| 5/4
|[[Würschmidt]]
| [[Würschmidt]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct

Revision as of 18:18, 5 February 2024

← 361edo 362edo 363edo →
Prime factorization 2 × 181
Step size 3.31492 ¢ 
Fifth 212\362 (702.762 ¢) (→ 106\181)
Semitones (A1:m2) 36:26 (119.3 ¢ : 86.19 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

362edo is enfactored in the 3-limit and is only consistent to the 5-odd-limit, with two mappings possible for the 7-limit:

  • 362 574 841 1016] (patent val),
  • 362 574 841 1017] (362d).

Using the patent val, it tempers out 393216/390625 and [25 -48 22 in the 5-limit; 4375/4374, 458752/455625 and 11529602/11390625 in the 7-limit, supporting barbados.

Using the 362d val, it tempers out 393216/390625 and [25 -48 22 in the 5-limit; 5120/5103, 118098/117649 and 1959552/1953125 in the 7-limit.

Odd harmonics

Approximation of odd harmonics in 362edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.81 +1.53 -0.87 +1.61 -1.04 +1.46 -0.98 +1.12 +0.83 -0.06 +1.56
Relative (%) +24.4 +46.2 -26.2 +48.7 -31.4 +44.1 -29.4 +33.8 +25.0 -1.9 +47.1
Steps
(reduced)
574
(212)
841
(117)
1016
(292)
1148
(62)
1252
(166)
1340
(254)
1414
(328)
1480
(32)
1538
(90)
1590
(142)
1638
(190)

Subsets and supersets

Since 362 factors into 2 × 181, 372edo has 2edo and 181edo as its subsets. 1448edo, which quadruples it, is a strong full 13-limit system.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 393216/390625, [25 -48 22 [362 574 841]] -0.3896 0.2822 8.51

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 117\362 387.85 5/4 Würschmidt

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct