437edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|437}} ==Theory== 437et tempers out 4096000/4084101 and 2401/2400 in the 7-limit; 25165824/25109315, 1835008/1830125, 2621440/2614689, 16384/16..."
 
Rework
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|437}}
{{EDO intro|437}}
==Theory==
 
437et tempers out 4096000/4084101 and [[2401/2400]] in the 7-limit; 25165824/25109315, 1835008/1830125, 2621440/2614689, [[16384/16335]], 151263/151250, 107495424/107421875, [[1953125/1948617]], [[3025/3024]], [[41503/41472]], 766656/765625, 391314/390625, 20614528/20588575 and 644204/643125 in the 11-limit.
== Theory ==
===Odd harmonics===
437edo is [[consistent]] to the [[7-odd-limit]], but the errors of [[harmonic]]s [[3/1|3]] and [[5/1|5]] are quite large, giving us the option of treating it as either a full 11-limit temperament, or a 2.9.15.21.13.17 [[subgroup]] temperament.
 
Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[2401/2400]] and 4096000/4084101 in the 7-limit; [[3025/3024]], [[41503/41472]], [[16384/16335]], and 151263/151250 in the 11-limit.
 
=== Odd harmonics ===
{{Harmonics in equal|437}}
{{Harmonics in equal|437}}
===Subsets and supersets===
 
437 factors into 19 × 23 with its subset edos {{EDOs|19, and 23}}. [[874edo]], which doubles it, gives a good correction to the harmonic 3.
=== Subsets and supersets ===
==Regular temperament properties==
Since 437 factors into {{factorization|437}}, 437edo contains [[19edo]] and [[23edo]] as subsets. [[874edo]], which doubles it, gives a good correction to the harmonic 3.
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
! colspan="2" | Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.9
| 2.9
|{{monzo|-1385 437}}
| {{monzo| -1385 437 }}
|{{val|437 1385}}
| {{mapping| 437 1385 }}
| 0.1114
| 0.1114
| 0.1114
| 0.1114
| 4.06
| 4.06
|}
|}
==Scales==
 
== Scales ==
* [[Namo7]]
* [[Namo7]]
* [[Namo10]]
* [[Namo10]]
* [[Namo17]]
* [[Namo17]]

Revision as of 08:03, 3 November 2023

← 436edo 437edo 438edo →
Prime factorization 19 × 23
Step size 2.746 ¢ 
Fifth 256\437 (702.975 ¢)
Semitones (A1:m2) 44:31 (120.8 ¢ : 85.13 ¢)
Dual sharp fifth 256\437 (702.975 ¢)
Dual flat fifth 255\437 (700.229 ¢)
Dual major 2nd 74\437 (203.204 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

437edo is consistent to the 7-odd-limit, but the errors of harmonics 3 and 5 are quite large, giving us the option of treating it as either a full 11-limit temperament, or a 2.9.15.21.13.17 subgroup temperament.

Using the patent val, the equal temperament tempers out 2401/2400 and 4096000/4084101 in the 7-limit; 3025/3024, 41503/41472, 16384/16335, and 151263/151250 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 437edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +1.02 +0.87 +0.51 -0.71 +0.63 -0.25 -0.85 -0.61 -0.95 -1.22 +0.56
Relative (%) +37.1 +31.7 +18.6 -25.7 +22.8 -9.2 -31.1 -22.1 -34.4 -44.3 +20.3
Steps
(reduced)
693
(256)
1015
(141)
1227
(353)
1385
(74)
1512
(201)
1617
(306)
1707
(396)
1786
(38)
1856
(108)
1919
(171)
1977
(229)

Subsets and supersets

Since 437 factors into 19 × 23, 437edo contains 19edo and 23edo as subsets. 874edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [-1385 437 [437 1385]] 0.1114 0.1114 4.06

Scales