117edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Aura (talk | contribs)
No edit summary
BudjarnLambeth (talk | contribs)
m Added subheadings; added table of harmonics
Line 4: Line 4:
It is inconsistent to the 5-limit and higher limit, with four mappings possible for the 11-limit: <117 185 272 328 405| (patent val), <117 186 272 329 405| (117bd), <117 185 271 328 404| (117ce), and <117 185 272 329 405| (117d).  
It is inconsistent to the 5-limit and higher limit, with four mappings possible for the 11-limit: <117 185 272 328 405| (patent val), <117 186 272 329 405| (117bd), <117 185 271 328 404| (117ce), and <117 185 272 329 405| (117d).  


== Theory ==
=== Commas ===
Using the patent val, it tempers out the [[syntonic comma]] (81/80) and |69 -1 -29> in the 5-limit; 6144/6125, 31104/30625, and 403368/390625 in the 7-limit, supporting the 7-limit [[Mohajira]] temperament; 540/539, 1344/1331, 1617/1600, and 3168/3125 in the 11-limit, supporting the [[Didymus rank three family|terpsichore rank-3 temperament]]; 144/143, 196/195, 364/363, 729/715, and 3146/3125 in the 13-limit.  
Using the patent val, it tempers out the [[syntonic comma]] (81/80) and |69 -1 -29> in the 5-limit; 6144/6125, 31104/30625, and 403368/390625 in the 7-limit, supporting the 7-limit [[Mohajira]] temperament; 540/539, 1344/1331, 1617/1600, and 3168/3125 in the 11-limit, supporting the [[Didymus rank three family|terpsichore rank-3 temperament]]; 144/143, 196/195, 364/363, 729/715, and 3146/3125 in the 13-limit.  


Line 12: Line 15:
Using the 117d val, it tempers out 126/125, 225/224, and 14495514624/13841287201 in the 7-limit; 99/98, 176/175, 441/440, and 12582912/12400927 in the 11-limit; 144/143, 640/637, 648/637, 1001/1000, and 43940/43923 in the 13-limit, supporting the 13-limit [[Grosstone]] temperament.
Using the 117d val, it tempers out 126/125, 225/224, and 14495514624/13841287201 in the 7-limit; 99/98, 176/175, 441/440, and 12582912/12400927 in the 11-limit; 144/143, 640/637, 648/637, 1001/1000, and 43940/43923 in the 13-limit, supporting the 13-limit [[Grosstone]] temperament.


=== Harmonics ===
{{Harmonics in equal|117}}
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->

Revision as of 02:50, 24 June 2023

← 116edo 117edo 118edo →
Prime factorization 32 × 13
Step size 10.2564 ¢ 
Fifth 68\117 (697.436 ¢)
Semitones (A1:m2) 8:11 (82.05 ¢ : 112.8 ¢)
Dual sharp fifth 69\117 (707.692 ¢) (→ 23\39)
Dual flat fifth 68\117 (697.436 ¢)
Dual major 2nd 20\117 (205.128 ¢)
Consistency limit 3
Distinct consistency limit 3

117edo is the equal division of the octave into 117 parts of 10.2564102564 cents each.

It is inconsistent to the 5-limit and higher limit, with four mappings possible for the 11-limit: <117 185 272 328 405| (patent val), <117 186 272 329 405| (117bd), <117 185 271 328 404| (117ce), and <117 185 272 329 405| (117d).

Theory

Commas

Using the patent val, it tempers out the syntonic comma (81/80) and |69 -1 -29> in the 5-limit; 6144/6125, 31104/30625, and 403368/390625 in the 7-limit, supporting the 7-limit Mohajira temperament; 540/539, 1344/1331, 1617/1600, and 3168/3125 in the 11-limit, supporting the terpsichore rank-3 temperament; 144/143, 196/195, 364/363, 729/715, and 3146/3125 in the 13-limit.

Using the 117bd val, it tempers out the kleisma, 15625/15552 and 17179869184/16142520375 in the 5-limit; 245/243, 3136/3125, and 51200/50421 in the 7-limit; 176/175, 1232/1215, 1375/1372, and 2560/2541 in the 11-limit; 169/168, 364/363, 640/637, 832/825, and 3200/3159 in the 13-limit.

Using the 117ce val, it tempers out the small diesis, 3125/3072 and 282429536481/268435456000 in the 5-limit; 2401/2400, 3645/3584, and 4375/4374 in the 7-limit; 243/242, 441/440, and 1815/1792 in the 11-limit; 105/104, 275/273, 1287/1280, and 2025/2002 in the 13-limit.

Using the 117d val, it tempers out 126/125, 225/224, and 14495514624/13841287201 in the 7-limit; 99/98, 176/175, 441/440, and 12582912/12400927 in the 11-limit; 144/143, 640/637, 648/637, 1001/1000, and 43940/43923 in the 13-limit, supporting the 13-limit Grosstone temperament.

Harmonics

Approximation of odd harmonics in 117edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -4.52 +3.43 -4.72 +1.22 +2.53 +0.50 -1.09 -2.39 -0.08 +1.01 -2.63
Relative (%) -44.1 +33.4 -46.1 +11.9 +24.7 +4.9 -10.6 -23.3 -0.8 +9.9 -25.7
Steps
(reduced)
185
(68)
272
(38)
328
(94)
371
(20)
405
(54)
433
(82)
457
(106)
478
(10)
497
(29)
514
(46)
529
(61)