Table of zeta-stretched edos
This table lists tuning instructions for equal divisions of the octave which have been stretched or compressed using optimal octave stretch based on zeta peaks, as described here: the Riemann zeta function and tuning.
No such table could possibly be complete (as there are so many possible edos), so please add tunings of interest as you see fit.
All of the tunings listed on this page are zeta peak index tunings, e.g. 1zpi, 2zpi, 3zpi... However, not all zeta peak index tunings are listed here - only those with intervals close to the octave. For a more complete table see: zeta peak index.
Calculation instructions
How to calculate the third column using the free version of Wolfram Cloud:
- Copy-paste
Plot[Abs[RiemannSiegelZ[9.06472028x]], {x, 11.9, 12.1}]
into a cell. - Change "11.9" and "12.1" to whatever values you want, e.g. to view the curve around 15edo you might use the values "14.9" and "15.1".
- Ensure that cell is still selected
- In the menu select Evaluation > Evaluate Cells
Table
This is a list of zeta peak-based octave tunings, which includes all EDOs up to 100 and certain noteworthy ones above 100.
Tuning | Associated edo | No. of steps per 1200 cents | Step size (cents) | Tuning of 2/1 (cents) | Gram point index |
---|---|---|---|---|---|
1zpi | 1edo | 1.127 | 1065.177 | 1065.177 | −1 |
2zpi | 2edo | 1.973 | 608.283 | 1216.565 | 0 |
4zpi | 3edo | 3.060 | 392.187 | 1176.562 | 2 |
6zpi | 4edo | 3.904 | 307.342 | 1229.367 | 4 |
9zpi | 5edo | 5.034 | 238.357 | 1191.783 | 7 |
12zpi | 6edo | 6.035 | 198.843 | 1193.056 | 10 |
15zpi | 7edo | 6.957 | 172.496 | 1207.471 | 13 |
19zpi | 8edo | 8.137 | 147.467 | 1179.734 | 17 |
22zpi | 9edo | 8.950 | 134.078 | 1206.705 | 20 |
26zpi | 10edo | 10.008 | 119.899 | 1198.986 | 24 |
30zpi | 11edo | 11.037 | 108.722 | 1195.938 | 28 |
34zpi | 12edo | 12.023 | 99.807 | 1197.686 | 32 |
38zpi | 13edo | 12.969 | 92.531 | 1202.900 | 36 |
42zpi | 14edo | 13.900 | 86.329 | 1208.611 | 40 |
47zpi | 15edo | 15.053 | 79.716 | 1195.736 | 45 |
51zpi | 16edo | 15.944 | 75.262 | 1204.187 | 49 |
56zpi | 17edo | 17.045 | 70.404 | 1196.861 | 54 |
61zpi | 18edo | 18.119 | 66.228 | 1192.113 | 59 |
65zpi | 19edo | 18.948 | 63.331 | 1203.288 | 63 |
70zpi | 20edo | 19.982 | 60.054 | 1201.087 | 68 |
75zpi | 21edo | 21.028 | 57.067 | 1198.406 | 73 |
80zpi | 22edo | 22.025 | 54.483 | 1198.630 | 78 |
84zpi | 23edo | 22.807 | 52.615 | 1210.148 | 82 |
90zpi | 24edo | 24.006 | 49.988 | 1199.713 | 88 |
95zpi | 25edo | 24.965 | 48.067 | 1201.678 | 93 |
100zpi | 26edo | 25.936 | 46.268 | 1202.975 | 98 |
106zpi | 27edo | 27.087 | 44.302 | 1196.163 | 104 |
111zpi | 28edo | 28.032 | 42.808 | 1198.629 | 109 |
116zpi | 29edo | 28.940 | 41.465 | 1202.489 | 114 |
122zpi | 30edo | 30.061 | 39.918 | 1197.555 | 120 |
127zpi | 31edo | 30.978 | 38.737 | 1200.837 | 125 |
133zpi | 32edo | 32.070 | 37.418 | 1197.375 | 131 |
138zpi | 33edo | 32.972 | 36.394 | 1201.009 | 136 |
144zpi | 34edo | 34.045 | 35.248 | 1198.419 | 142 |
149zpi | 35edo | 34.925 | 34.359 | 1202.564 | 147 |
155zpi | 36edo | 35.982 | 33.350 | 1200.587 | 153 |
161zpi | 37edo | 37.028 | 32.408 | 1199.108 | 159 |
166zpi | 38edo | 37.890 | 31.671 | 1203.480 | 164 |
173zpi | 39edo | 39.124 | 30.672 | 1196.204 | 171 |
178zpi | 40edo | 39.968 | 30.024 | 1200.965 | 176 |
184zpi | 41edo | 40.988 | 29.277 | 1200.349 | 182 |
190zpi | 42edo | 41.999 | 28.572 | 1200.032 | 188 |
196zpi | 43edo | 43.026 | 27.890 | 1199.261 | 194 |
202zpi | 44edo | 44.015 | 27.263 | 1199.579 | 200 |
207zpi | 45edo | 44.840 | 26.762 | 1204.289 | 205 |
214zpi | 46edo | 46.009 | 26.082 | 1199.766 | 212 |
220zpi | 47edo | 47.006 | 25.529 | 1199.846 | 218 |
226zpi | 48edo | 47.988 | 25.006 | 1200.292 | 224 |
233zpi | 49edo | 49.141 | 24.419 | 1196.552 | 231 |
238zpi | 50edo | 49.939 | 24.030 | 1201.477 | 236 |
245zpi | 51edo | 51.080 | 23.493 | 1198.128 | 243 |
251zpi | 52edo | 52.043 | 23.058 | 1199.018 | 249 |
257zpi | 53edo | 52.997 | 22.643 | 1200.072 | 255 |
264zpi | 54edo | 54.116 | 22.175 | 1197.430 | 262 |
269zpi | 55edo | 54.894 | 21.860 | 1202.325 | 267 |
276zpi | 56edo | 56.008 | 21.425 | 1199.821 | 274 |
282zpi | 57edo | 56.968 | 21.064 | 1200.668 | 280 |
289zpi | 58edo | 58.067 | 20.666 | 1198.621 | 287 |
295zpi | 59edo | 58.992 | 20.342 | 1200.157 | 293 |
301zpi | 60edo | 59.920 | 20.027 | 1201.599 | 299 |
308zpi | 61edo | 61.003 | 19.671 | 1199.937 | 306 |
314zpi | 62edo | 61.938 | 19.374 | 1201.200 | 312 |
321zpi | 63edo | 63.019 | 19.042 | 1199.633 | 319 |
328zpi | 64edo | 64.099 | 18.721 | 1198.140 | 326 |
334zpi | 65edo | 65.016 | 18.457 | 1199.708 | 332 |
340zpi | 66edo | 65.916 | 18.205 | 1201.533 | 338 |
347zpi | 67edo | 66.998 | 17.911 | 1200.029 | 345 |
354zpi | 68edo | 68.049 | 17.634 | 1199.131 | 352 |
360zpi | 69edo | 68.960 | 17.401 | 1200.696 | 358 |
367zpi | 70edo | 70.004 | 17.142 | 1199.931 | 365 |
374zpi | 71edo | 71.059 | 16.887 | 1198.998 | 372 |
380zpi | 72edo | 71.951 | 16.678 | 1200.824 | 378 |
387zpi | 73edo | 72.983 | 16.442 | 1200.273 | 385 |
394zpi | 74edo | 74.052 | 16.205 | 1199.155 | 392 |
401zpi | 75edo | 75.091 | 15.981 | 1198.544 | 399 |
407zpi | 76edo | 75.968 | 15.796 | 1200.503 | 405 |
414zpi | 77edo | 76.992 | 15.586 | 1200.127 | 412 |
420zpi | 78edo | 77.851 | 15.414 | 1202.292 | 418 |
427zpi | 79edo | 78.892 | 15.211 | 1201.637 | 425 |
435zpi | 80edo | 80.073 | 14.986 | 1198.904 | 433 |
441zpi | 81edo | 80.948 | 14.824 | 1200.777 | 439 |
448zpi | 82edo | 81.954 | 14.642 | 1200.671 | 446 |
455zpi | 83edo | 82.967 | 14.464 | 1200.484 | 453 |
462zpi | 84edo | 83.997 | 14.286 | 1200.040 | 460 |
469zpi | 85edo | 84.991 | 14.119 | 1200.131 | 467 |
476zpi | 86edo | 86.019 | 13.950 | 1199.741 | 474 |
483zpi | 87edo | 87.014 | 13.791 | 1199.808 | 481 |
490zpi | 88edo | 88.027 | 13.632 | 1199.635 | 488 |
497zpi | 89edo | 89.023 | 13.480 | 1199.691 | 495 |
504zpi | 90edo | 90.006 | 13.332 | 1199.917 | 502 |
510zpi | 91edo | 90.852 | 13.208 | 1201.956 | 508 |
518zpi | 92edo | 91.993 | 13.044 | 1200.089 | 516 |
525zpi | 93edo | 93.002 | 12.903 | 1199.969 | 523 |
532zpi | 94edo | 93.984 | 12.768 | 1200.208 | 530 |
540zpi | 95edo | 95.117 | 12.616 | 1198.526 | 538 |
546zpi | 96edo | 95.954 | 12.506 | 1200.570 | 544 |
553zpi | 97edo | 96.925 | 12.381 | 1200.927 | 551 |
560zpi | 98edo | 97.923 | 12.254 | 1200.941 | 558 |
568zpi | 99edo | 99.047 | 12.115 | 1199.427 | 566 |
575zpi | 100edo | 99.869 | 12.016 | 1201.577 | 573 |
1936zpi | 270edo | 270.018 | 4.444 | 1199.920 | 1934 |
2293zpi | 311edo | 311.004 | 3.858 | 1199.985 | 2291 |
2568zpi | 342edo | 341.975 | 3.509 | 1200.088 | 2566 |
3971zpi | 494edo | 494.014 | 2.429 | 1199.966 | 3969 |
5818zpi | 684edo | 683.939 | 1.755 | 1200.107 | 5816 |
Record zeta peaks
0.00000 1.12657 1.97277 3.05976 3.90445 5.03448 6.95669 10.00846 12.02318 18.94809 22.02515 27.08661 30.97838 40.98808 52.99683 71.95061 99.04733 117.96951 130.00391 152.05285 170.99589 217.02470 224.00255 270.01779 341.97485 422.05570 441.01827 494.01377 742.01093 764.01938 935.03297 953.94128 1012.02423 1105.99972 1177.96567 1236.02355 1394.98350 1447.97300 1577.98315 2459.98488 2683.99168 3395.02659 5585.00172 6079.01642 7032.96529 8268.98378 8539.00834 11664.01488 14347.99444 16807.99325 28742.01019 34691.00191 36268.98775 57578.00854 58972.99326 95524.04578 102557.01877 112984.99531 148418.01630 212146.99129 241199.99851