There are many conceivable ways to map 27edo onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.
6
11
7
12
17
22
0
3
8
13
18
23
1
6
11
4
9
14
19
24
2
7
12
17
22
0
0
5
10
15
20
25
3
8
13
18
23
1
6
11
1
6
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
24
2
7
12
17
22
0
5
10
15
20
25
3
8
13
18
23
1
6
11
25
3
8
13
18
23
1
6
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
21
26
4
9
14
19
24
2
7
12
17
22
0
5
10
15
20
25
3
8
13
18
23
1
6
11
0
5
10
15
20
25
3
8
13
18
23
1
6
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
5
10
15
20
25
3
8
13
18
23
1
0
5
10
15
20
25
3
8
13
18
23
1
6
11
16
21
26
4
9
14
19
24
2
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
5
10
15
20
25
0
5
10
15
20
25
3
8
13
18
23
1
6
11
16
21
26
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
5
10
15
20
25
3
8
13
18
23
11
16
21
26
4
9
14
19
0
5
10
15
20
11
16
Keep in mind that 27edo is a superpyth temperament, so 5/4 is mapped to the interval of an augmented second (e.g. a 5/4 above C is D♯). Therefore if 0 is 1/1 on this mapping, 9 represents 5/4 and you can find that by going over to 5 (e.g. C → D) and then going up to 9 (D → D♯). If you want root-3rd-5th triads to be accessible in a more intuitive way, the tetracot mapping may be preferable.
21
25
24
1
5
9
13
23
0
4
8
12
16
20
24
26
3
7
11
15
19
23
0
4
8
12
25
2
6
10
14
18
22
26
3
7
11
15
19
23
1
5
9
13
17
21
25
2
6
10
14
18
22
26
3
7
11
0
4
8
12
16
20
24
1
5
9
13
17
21
25
2
6
10
14
18
22
3
7
11
15
19
23
0
4
8
12
16
20
24
1
5
9
13
17
21
25
2
6
10
2
6
10
14
18
22
26
3
7
11
15
19
23
0
4
8
12
16
20
24
1
5
9
13
17
21
9
13
17
21
25
2
6
10
14
18
22
26
3
7
11
15
19
23
0
4
8
12
16
20
24
1
5
9
20
24
1
5
9
13
17
21
25
2
6
10
14
18
22
26
3
7
11
15
19
23
0
4
8
12
8
12
16
20
24
1
5
9
13
17
21
25
2
6
10
14
18
22
26
3
7
11
15
19
23
0
4
8
12
16
20
24
1
5
9
13
17
21
25
2
6
10
14
7
11
15
19
23
0
4
8
12
16
20
24
1
5
9
13
17
18
22
26
3
7
11
15
19
23
0
4
8
12
16
6
10
14
18
22
26
3
7
11
15
19
17
21
25
2
6
10
14
18
5
9
13
17
21
16
20
Other alternatives to this include a mapping derived from a Lumatone mapping for neutral thirds scales:
0
3
5
8
11
14
17
7
10
13
16
19
22
25
1
12
15
18
21
24
0
3
6
9
12
15
14
17
20
23
26
2
5
8
11
14
17
20
23
26
19
22
25
1
4
7
10
13
16
19
22
25
1
4
7
10
13
21
24
0
3
6
9
12
15
18
21
24
0
3
6
9
12
15
18
21
24
26
2
5
8
11
14
17
20
23
26
2
5
8
11
14
17
20
23
26
2
5
8
11
1
4
7
10
13
16
19
22
25
1
4
7
10
13
16
19
22
25
1
4
7
10
13
16
19
22
9
12
15
18
21
24
0
3
6
9
12
15
18
21
24
0
3
6
9
12
15
18
21
24
0
3
6
9
20
23
26
2
5
8
11
14
17
20
23
26
2
5
8
11
14
17
20
23
26
2
5
8
11
14
7
10
13
16
19
22
25
1
4
7
10
13
16
19
22
25
1
4
7
10
13
16
19
18
21
24
0
3
6
9
12
15
18
21
24
0
3
6
9
12
15
18
21
5
8
11
14
17
20
23
26
2
5
8
11
14
17
20
23
26
16
19
22
25
1
4
7
10
13
16
19
22
25
1
3
6
9
12
15
18
21
24
0
3
6
14
17
20
23
26
2
5
8
1
4
7
10
13
12
15
Or this rotated version of the above, which resembles the Lumatone mapping for 24edo in the official manual:
0
5
3
8
13
18
23
1
6
11
16
21
26
4
9
4
9
14
19
24
2
7
12
17
22
0
2
7
12
17
22
0
5
10
15
20
25
3
8
13
5
10
15
20
25
3
8
13
18
23
1
6
11
16
21
26
4
3
8
13
18
23
1
6
11
16
21
26
4
9
14
19
24
2
7
12
17
6
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
5
10
15
20
25
3
8
4
9
14
19
24
2
7
12
17
22
0
5
10
15
20
25
3
8
13
18
23
1
6
11
16
21
12
17
22
0
5
10
15
20
25
3
8
13
18
23
1
6
11
16
21
26
4
9
14
19
24
2
7
12
25
3
8
13
18
23
1
6
11
16
21
26
4
9
14
19
24
2
7
12
17
22
0
5
10
15
16
21
26
4
9
14
19
24
2
7
12
17
22
0
5
10
15
20
25
3
8
13
18
2
7
12
17
22
0
5
10
15
20
25
3
8
13
18
23
1
6
11
16
20
25
3
8
13
18
23
1
6
11
16
21
26
4
9
14
19
6
11
16
21
26
4
9
14
19
24
2
7
12
17
24
2
7
12
17
22
0
5
10
15
20
10
15
20
25
3
8
13
18
1
6
11
16
21
14
19
If you want to maximise your range, the myna one is the widest one that still covers the whole gamut, spanning 8 octaves in its most compressed MOS.
12
19
18
25
5
12
19
17
24
4
11
18
25
5
12
23
3
10
17
24
4
11
18
25
5
12
22
2
9
16
23
3
10
17
24
4
11
18
25
5
1
8
15
22
2
9
16
23
3
10
17
24
4
11
18
25
5
0
7
14
21
1
8
15
22
2
9
16
23
3
10
17
24
4
11
18
25
6
13
20
0
7
14
21
1
8
15
22
2
9
16
23
3
10
17
24
4
11
18
25
5
12
19
26
6
13
20
0
7
14
21
1
8
15
22
2
9
16
23
3
10
17
24
4
11
18
18
25
5
12
19
26
6
13
20
0
7
14
21
1
8
15
22
2
9
16
23
3
10
17
24
4
11
18
11
18
25
5
12
19
26
6
13
20
0
7
14
21
1
8
15
22
2
9
16
23
3
10
17
24
11
18
25
5
12
19
26
6
13
20
0
7
14
21
1
8
15
22
2
9
16
23
3
4
11
18
25
5
12
19
26
6
13
20
0
7
14
21
1
8
15
22
2
4
11
18
25
5
12
19
26
6
13
20
0
7
14
21
1
8
24
4
11
18
25
5
12
19
26
6
13
20
0
7
24
4
11
18
25
5
12
19
26
6
13
17
24
4
11
18
25
5
12
17
24
4
11
18
10
17