List of edo-distinct 46et rank two temperaments

From Xenharmonic Wiki
Jump to: navigation, search

The temperaments listed are 46edo-distinct, meaning that they are all different even if tuned in 46edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness.

5-limit temperaments

Number Wedgie Name Complexity Commas
1 <<1 21 31]] Leapday 7.145 10737418240/10460353203
2 <<2 -4 -11]] Srutal 2.121 2048/2025
3 <<3 17 20]] Rodan 5.377 131072000/129140163
4 <<4 38 51]] 12.467 1407374883553280000/1350851717672992089
5 <<5 13 9]] Amity 3.970 1600000/1594323
6 <<40 -34 -147]] 28.559 |147 -34 -40>
7 <<7 9 -2]] Sensi 3.407 78732/78125
8 <<8 30 29]] 9.211 209715200000000/205891132094649
9 <<9 5 -13]] Valentine 4.056 1990656/1953125
10 <<36 -26 -125]] 24.461 |125 -26 -36>
11 <<11 1 -24]] Magus 5.504 50331648/48828125
12 <<12 22 7]] 7.088 31381059609/31250000000
13 <<13 -3 -35]] 7.289 34359738368/32958984375
14 <<32 -18 -103]] 20.421 |103 -18 -32>
15 <<15 -7 -46]] 9.218 70368744177664/66741943359375
16 <<16 14 -15]] Vines 7.185 156728328192/152587890625
17 <<17 35 16]] Minortone 10.972 50031545098999707/50000000000000000
18 <<28 -10 -81]] 16.483 |81 -10 -28>
19 <<19 31 5]] Sfourth 10.389 617673396283947/610351562500000
20 <<20 6 -37]] 9.434 100192997081088/95367431640625
21 <<25 19 -28]] 11.16 311992186885373952/298023223876953125
22 <<24 -2 -59]] 12.742 576460752303423488/536441802978515625
23 <<23 23 -17]] 10.489 12339534735212544/11920928955078125

7-limit temperaments

Number Wedgie Name Complexity Commas
1 <<1 21 15 31 21 -24]] Leapday 6.021 686/675 5120/5103
2 <<2 -4 -16 -11 -31 -26]] Diaschismic 4.290 126/125 2048/2025
3 <<3 17 -1 20 -10 -50]] Rodan 5.012 245/243 1029/1024
4 <<4 -8 14 -22 11 55]] Shrutar 5.101 245/243 2048/2025
5 <<5 13 29 9 32 31]] Accord 6.169 126/125 100352/98415
6 <<6 -12 -2 -33 -20 29]] Echidnic 5.195 686/675 1029/1024
7 <<7 9 13 -2 1 5]] Sensi 3.080 126/125 245/243
8 <<8 30 28 29 22 -19]] 8.030 686/675 179200/177147
9 <<9 5 -3 -13 -30 -21]] Valentine 4.210 126/125 1029/1024
10 <<10 26 12 18 -9 -45]] Bamity 6.572 245/243 64827/64000
11 <<11 1 27 -24 12 60]] Magus 6.775 245/243 28672/28125
12 <<12 22 -4 7 -40 -71]] Unidec 7.662 1029/1024 4375/4374
13 <<13 -3 11 -35 -19 34]] 6.058 686/675 6144/6125
14 <<14 18 -20 -4 -71 -97]] 10.536 6144/6125 78732/78125
15 <<15 -7 -5 -46 -50 8]] 8.019 1029/1024 9604/9375
16 <<16 14 10 -15 -29 -16]] Vines 6.001 126/125 84035/82944
17 <<17 35 25 16 -8 -40]] 8.957 245/243 823543/800000
18 <<18 10 40 -26 13 65]] 9.205 245/243 401408/390625
19 <<19 31 9 5 -39 -66]] Sfourth 9.250 4375/4374 64827/64000
20 <<20 6 24 -37 -18 39]] 8.085 686/675 110592/109375
21 <<25 19 7 -28 -59 -37]] 9.899 126/125 28824005/28311552
22 <<22 2 8 -48 -49 13]] 9.100 6144/6125 9604/9375
23 <<23 23 23 -17 -28 -11]] 8.560 126/125 5764801/5598720

11-limit temperaments

Number Wedgie Name Complexity Commas
1 <<1 21 15 11 31 21 14 -24 -47 -21]] Leapday 5.226 121/120 441/440 686/675
2 <<2 -4 -16 -24 -11 -31 -45 -26 -42 -12]] Diaschismic 5.048 126/125 176/175 5488/5445
3 <<3 17 -1 -13 20 -10 -31 -50 -89 -33]] Rodan 5.754 245/243 385/384 441/440
4 <<4 -8 14 -2 -22 11 -17 55 23 -54]] Shrutar 4.530 121/120 176/175 245/243
5 <<5 13 29 9 9 32 -3 31 -24 -75]] Accord 5.513 121/120 126/125 896/891
6 <<6 -12 -2 20 -33 -20 11 29 88 63]] Echidnic 6.012 385/384 441/440 686/675
7 <<7 9 13 31 -2 1 25 5 41 42]] Sensus 4.503 126/125 176/175 245/243
8 <<8 -16 -18 -4 -44 -51 -34 3 46 51]] 6.991 121/120 441/440 2048/2025
9 <<9 5 -3 7 -13 -30 -20 -21 -1 30]] Valentine 3.651 121/120 126/125 176/175
10 <<10 26 12 18 18 -9 -6 -45 -48 9]] Bamity 5.692 121/120 245/243 441/440
11 <<11 1 27 29 -24 12 8 60 64 -12]] Magus 6.425 176/175 245/243 1331/1323
12 <<12 22 -4 -6 7 -40 -51 -71 -90 -3]] Unidec 7.532 385/384 441/440 4375/4374
13 <<13 -3 11 5 -35 -19 -37 34 22 -24]] Twothirdtonic 5.305 121/120 176/175 686/675
14 <<14 18 26 16 -4 2 -23 10 -25 -45]] 5.457 121/120 126/125 245/243
15 <<15 -7 -5 27 -46 -50 -9 8 87 93]] 8.115 385/384 441/440 9604/9375
16 <<16 14 10 38 -15 -29 5 -16 40 72]] 6.460 126/125 176/175 26411/25920
17 <<17 -11 25 3 -57 -8 -54 89 45 -78]] 9.165 121/120 176/175 33614/32805
18 <<18 10 40 14 -26 13 -40 65 -2 -99]] 8.258 121/120 245/243 3168/3125
19 <<19 31 9 25 5 -39 -26 -66 -49 39]] Sfourth 8.009 121/120 441/440 4375/4374
20 <<20 6 24 36 -37 -18 -12 39 63 18]] 7.552 176/175 686/675 1331/1323
21 <<25 19 7 45 -28 -59 -15 -37 39 102]] 9.479 126/125 176/175 717409/699840
22 <<22 2 8 12 -48 -49 -57 13 21 6]] 7.901 121/120 176/175 9604/9375
23 <<23 23 23 23 -17 -28 -43 -11 -26 -15]] 7.471 121/120 126/125 2401/2376

13-limit temperaments

Number Wedgie Name Complexity Commas
1 <<1 21 15 11 8 31 21 14 9 -24 -47 -59 -21 -33 -13]] Leapday 4.750 91/90 121/120 169/168 441/440
2 <<2 -4 -16 -24 -30 -11 -31 -45 -55 -26 -42 -55 -12 -25 -15]] Diaschismic 5.517 126/125 176/175 196/195 364/363
3 <<3 17 -1 33 24 20 -10 42 27 -50 18 -7 96 71 -39]] 5.905 91/90 176/175 245/243 847/845
4 <<4 -8 14 -2 -14 -22 11 -17 -37 55 23 -3 -54 -91 -41]] Srutar 4.806 91/90 121/120 176/175 245/243
5 <<5 13 -17 9 -6 9 -41 -3 -28 -76 -24 -62 84 46 -54]] Hitchcock 5.834 121/120 169/168 176/175 325/324
6 <<6 -12 -2 20 2 -33 -20 11 -19 29 88 49 63 13 -67]] Echidnic 5.378 91/90 169/168 385/384 441/440
7 <<7 9 13 31 10 -2 1 25 -10 5 41 -10 42 -20 -80]] 4.140 91/90 126/125 169/168 352/351
8 <<8 -16 -18 -4 -28 -44 -51 -34 -74 3 46 -6 51 -12 -82]] 7.062 121/120 196/195 352/351 832/825
9 <<9 5 -3 7 26 -13 -30 -20 8 -21 -1 42 30 84 64]] Dwynwen 4.463 91/90 121/120 126/125 176/175
10 <<10 26 12 18 34 18 -9 -6 17 -45 -48 -17 9 51 51]] Bamity 5.542 91/90 121/120 245/243 441/440
11 <<11 1 27 29 -4 -24 12 8 -47 60 64 -13 -12 -111 -121]] Magus 6.753 91/90 176/175 245/243 1331/1323
12 <<12 22 -4 -6 4 7 -40 -51 -38 -71 -90 -72 -3 26 36]] Hendec 6.806 169/168 325/324 364/363 1716/1715
13 <<13 -3 11 5 12 -35 -19 -37 -29 34 22 39 -24 -7 23]] Twothirdtonic 4.766 91/90 121/120 169/168 176/175
14 <<14 18 26 16 20 -4 2 -23 -20 10 -25 -20 -45 -40 10]] 4.895 91/90 121/120 126/125 169/168
15 <<15 -7 -5 -19 -18 -46 -50 -82 -84 8 -20 -16 -36 -32 8]] 7.753 176/175 196/195 364/363 507/500
16 <<16 14 10 38 36 -15 -29 5 -2 -16 40 32 72 64 -16]] 6.140 91/90 126/125 176/175 847/845
17 <<17 -11 25 3 -2 -57 -8 -54 -66 89 45 36 -78 -98 -18]] 8.467 91/90 121/120 176/175 9604/9477
18 <<18 10 -6 14 6 -26 -60 -40 -57 -42 -2 -23 60 39 -31]] 6.620 121/120 126/125 169/168 176/175
19 <<19 31 9 25 14 5 -39 -26 -48 -66 -49 -82 39 6 -44]] Sfourth 7.421 121/120 169/168 325/324 441/440
20 <<20 6 24 36 22 -37 -18 -12 -39 39 63 29 18 -27 -57]] 6.772 91/90 169/168 176/175 1331/1323
21 <<25 19 7 -1 16 -28 -59 -88 -67 -37 -68 -33 -27 19 59]] 8.616 126/125 169/168 364/363 1716/1715
22 <<22 2 8 12 38 -48 -49 -57 -21 13 21 81 6 77 87]] 7.885 91/90 121/120 176/175 7203/7150
23 <<23 23 23 23 0 -17 -28 -43 -85 -11 -26 -85 -15 -85 -85]] 8.071 121/120 126/125 196/195 3549/3520