List of edo-distinct 46et rank two temperaments
Jump to navigation
Jump to search
The temperaments listed are 46edo-distinct, meaning that they are all different even if tuned in 46edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness.
5-limit temperaments
Number | Wedgie | Name | Complexity | Commas |
1 | <<1 21 31]] | Leapday | 7.145 | 10737418240/10460353203 |
2 | <<2 -4 -11]] | Srutal | 2.121 | 2048/2025 |
3 | <<3 17 20]] | Rodan | 5.377 | 131072000/129140163 |
4 | <<4 38 51]] | 12.467 | 1407374883553280000/1350851717672992089 | |
5 | <<5 13 9]] | Amity | 3.970 | 1600000/1594323 |
6 | <<40 -34 -147]] | 28.559 | |147 -34 -40> | |
7 | <<7 9 -2]] | Sensi | 3.407 | 78732/78125 |
8 | <<8 30 29]] | 9.211 | 209715200000000/205891132094649 | |
9 | <<9 5 -13]] | Valentine | 4.056 | 1990656/1953125 |
10 | <<36 -26 -125]] | 24.461 | |125 -26 -36> | |
11 | <<11 1 -24]] | Magus | 5.504 | 50331648/48828125 |
12 | <<12 22 7]] | 7.088 | 31381059609/31250000000 | |
13 | <<13 -3 -35]] | 7.289 | 34359738368/32958984375 | |
14 | <<32 -18 -103]] | 20.421 | |103 -18 -32> | |
15 | <<15 -7 -46]] | 9.218 | 70368744177664/66741943359375 | |
16 | <<16 14 -15]] | Vines | 7.185 | 156728328192/152587890625 |
17 | <<17 35 16]] | Minortone | 10.972 | 50031545098999707/50000000000000000 |
18 | <<28 -10 -81]] | 16.483 | |81 -10 -28> | |
19 | <<19 31 5]] | Sfourth | 10.389 | 617673396283947/610351562500000 |
20 | <<20 6 -37]] | 9.434 | 100192997081088/95367431640625 | |
21 | <<25 19 -28]] | 11.16 | 311992186885373952/298023223876953125 | |
22 | <<24 -2 -59]] | 12.742 | 576460752303423488/536441802978515625 | |
23 | <<23 23 -17]] | 10.489 | 12339534735212544/11920928955078125 |
7-limit temperaments
Number | Wedgie | Name | Complexity | Commas |
1 | <<1 21 15 31 21 -24]] | Leapday | 6.021 | 686/675 5120/5103 |
2 | <<2 -4 -16 -11 -31 -26]] | Diaschismic | 4.290 | 126/125 2048/2025 |
3 | <<3 17 -1 20 -10 -50]] | Rodan | 5.012 | 245/243 1029/1024 |
4 | <<4 -8 14 -22 11 55]] | Shrutar | 5.101 | 245/243 2048/2025 |
5 | <<5 13 29 9 32 31]] | Accord | 6.169 | 126/125 100352/98415 |
6 | <<6 -12 -2 -33 -20 29]] | Echidnic | 5.195 | 686/675 1029/1024 |
7 | <<7 9 13 -2 1 5]] | Sensi | 3.080 | 126/125 245/243 |
8 | <<8 30 28 29 22 -19]] | 8.030 | 686/675 179200/177147 | |
9 | <<9 5 -3 -13 -30 -21]] | Valentine | 4.210 | 126/125 1029/1024 |
10 | <<10 26 12 18 -9 -45]] | Bamity | 6.572 | 245/243 64827/64000 |
11 | <<11 1 27 -24 12 60]] | Magus | 6.775 | 245/243 28672/28125 |
12 | <<12 22 -4 7 -40 -71]] | Unidec | 7.662 | 1029/1024 4375/4374 |
13 | <<13 -3 11 -35 -19 34]] | 6.058 | 686/675 6144/6125 | |
14 | <<14 18 -20 -4 -71 -97]] | 10.536 | 6144/6125 78732/78125 | |
15 | <<15 -7 -5 -46 -50 8]] | 8.019 | 1029/1024 9604/9375 | |
16 | <<16 14 10 -15 -29 -16]] | Vines | 6.001 | 126/125 84035/82944 |
17 | <<17 35 25 16 -8 -40]] | 8.957 | 245/243 823543/800000 | |
18 | <<18 10 40 -26 13 65]] | 9.205 | 245/243 401408/390625 | |
19 | <<19 31 9 5 -39 -66]] | Sfourth | 9.250 | 4375/4374 64827/64000 |
20 | <<20 6 24 -37 -18 39]] | 8.085 | 686/675 110592/109375 | |
21 | <<25 19 7 -28 -59 -37]] | 9.899 | 126/125 28824005/28311552 | |
22 | <<22 2 8 -48 -49 13]] | 9.100 | 6144/6125 9604/9375 | |
23 | <<23 23 23 -17 -28 -11]] | 8.560 | 126/125 5764801/5598720 |
11-limit temperaments
Number | Wedgie | Name | Complexity | Commas |
1 | <<1 21 15 11 31 21 14 -24 -47 -21]] | Leapday | 5.226 | 121/120 441/440 686/675 |
2 | <<2 -4 -16 -24 -11 -31 -45 -26 -42 -12]] | Diaschismic | 5.048 | 126/125 176/175 5488/5445 |
3 | <<3 17 -1 -13 20 -10 -31 -50 -89 -33]] | Rodan | 5.754 | 245/243 385/384 441/440 |
4 | <<4 -8 14 -2 -22 11 -17 55 23 -54]] | Shrutar | 4.530 | 121/120 176/175 245/243 |
5 | <<5 13 29 9 9 32 -3 31 -24 -75]] | Accord | 5.513 | 121/120 126/125 896/891 |
6 | <<6 -12 -2 20 -33 -20 11 29 88 63]] | Echidnic | 6.012 | 385/384 441/440 686/675 |
7 | <<7 9 13 31 -2 1 25 5 41 42]] | Sensus | 4.503 | 126/125 176/175 245/243 |
8 | <<8 -16 -18 -4 -44 -51 -34 3 46 51]] | 6.991 | 121/120 441/440 2048/2025 | |
9 | <<9 5 -3 7 -13 -30 -20 -21 -1 30]] | Valentine | 3.651 | 121/120 126/125 176/175 |
10 | <<10 26 12 18 18 -9 -6 -45 -48 9]] | Bamity | 5.692 | 121/120 245/243 441/440 |
11 | <<11 1 27 29 -24 12 8 60 64 -12]] | Magus | 6.425 | 176/175 245/243 1331/1323 |
12 | <<12 22 -4 -6 7 -40 -51 -71 -90 -3]] | Unidec | 7.532 | 385/384 441/440 4375/4374 |
13 | <<13 -3 11 5 -35 -19 -37 34 22 -24]] | Twothirdtonic | 5.305 | 121/120 176/175 686/675 |
14 | <<14 18 26 16 -4 2 -23 10 -25 -45]] | 5.457 | 121/120 126/125 245/243 | |
15 | <<15 -7 -5 27 -46 -50 -9 8 87 93]] | 8.115 | 385/384 441/440 9604/9375 | |
16 | <<16 14 10 38 -15 -29 5 -16 40 72]] | 6.460 | 126/125 176/175 26411/25920 | |
17 | <<17 -11 25 3 -57 -8 -54 89 45 -78]] | 9.165 | 121/120 176/175 33614/32805 | |
18 | <<18 10 40 14 -26 13 -40 65 -2 -99]] | 8.258 | 121/120 245/243 3168/3125 | |
19 | <<19 31 9 25 5 -39 -26 -66 -49 39]] | Sfourth | 8.009 | 121/120 441/440 4375/4374 |
20 | <<20 6 24 36 -37 -18 -12 39 63 18]] | 7.552 | 176/175 686/675 1331/1323 | |
21 | <<25 19 7 45 -28 -59 -15 -37 39 102]] | 9.479 | 126/125 176/175 717409/699840 | |
22 | <<22 2 8 12 -48 -49 -57 13 21 6]] | 7.901 | 121/120 176/175 9604/9375 | |
23 | <<23 23 23 23 -17 -28 -43 -11 -26 -15]] | 7.471 | 121/120 126/125 2401/2376 |
13-limit temperaments
Number | Wedgie | Name | Complexity | Commas |
1 | <<1 21 15 11 8 31 21 14 9 -24 -47 -59 -21 -33 -13]] | Leapday | 4.750 | 91/90 121/120 169/168 441/440 |
2 | <<2 -4 -16 -24 -30 -11 -31 -45 -55 -26 -42 -55 -12 -25 -15]] | Diaschismic | 5.517 | 126/125 176/175 196/195 364/363 |
3 | <<3 17 -1 33 24 20 -10 42 27 -50 18 -7 96 71 -39]] | 5.905 | 91/90 176/175 245/243 847/845 | |
4 | <<4 -8 14 -2 -14 -22 11 -17 -37 55 23 -3 -54 -91 -41]] | Srutar | 4.806 | 91/90 121/120 176/175 245/243 |
5 | <<5 13 -17 9 -6 9 -41 -3 -28 -76 -24 -62 84 46 -54]] | Hitchcock | 5.834 | 121/120 169/168 176/175 325/324 |
6 | <<6 -12 -2 20 2 -33 -20 11 -19 29 88 49 63 13 -67]] | Echidnic | 5.378 | 91/90 169/168 385/384 441/440 |
7 | <<7 9 13 31 10 -2 1 25 -10 5 41 -10 42 -20 -80]] | 4.140 | 91/90 126/125 169/168 352/351 | |
8 | <<8 -16 -18 -4 -28 -44 -51 -34 -74 3 46 -6 51 -12 -82]] | 7.062 | 121/120 196/195 352/351 832/825 | |
9 | <<9 5 -3 7 26 -13 -30 -20 8 -21 -1 42 30 84 64]] | Dwynwen | 4.463 | 91/90 121/120 126/125 176/175 |
10 | <<10 26 12 18 34 18 -9 -6 17 -45 -48 -17 9 51 51]] | Bamity | 5.542 | 91/90 121/120 245/243 441/440 |
11 | <<11 1 27 29 -4 -24 12 8 -47 60 64 -13 -12 -111 -121]] | Magus | 6.753 | 91/90 176/175 245/243 1331/1323 |
12 | <<12 22 -4 -6 4 7 -40 -51 -38 -71 -90 -72 -3 26 36]] | Hendec | 6.806 | 169/168 325/324 364/363 1716/1715 |
13 | <<13 -3 11 5 12 -35 -19 -37 -29 34 22 39 -24 -7 23]] | Twothirdtonic | 4.766 | 91/90 121/120 169/168 176/175 |
14 | <<14 18 26 16 20 -4 2 -23 -20 10 -25 -20 -45 -40 10]] | 4.895 | 91/90 121/120 126/125 169/168 | |
15 | <<15 -7 -5 -19 -18 -46 -50 -82 -84 8 -20 -16 -36 -32 8]] | 7.753 | 176/175 196/195 364/363 507/500 | |
16 | <<16 14 10 38 36 -15 -29 5 -2 -16 40 32 72 64 -16]] | 6.140 | 91/90 126/125 176/175 847/845 | |
17 | <<17 -11 25 3 -2 -57 -8 -54 -66 89 45 36 -78 -98 -18]] | 8.467 | 91/90 121/120 176/175 9604/9477 | |
18 | <<18 10 -6 14 6 -26 -60 -40 -57 -42 -2 -23 60 39 -31]] | 6.620 | 121/120 126/125 169/168 176/175 | |
19 | <<19 31 9 25 14 5 -39 -26 -48 -66 -49 -82 39 6 -44]] | Sfourth | 7.421 | 121/120 169/168 325/324 441/440 |
20 | <<20 6 24 36 22 -37 -18 -12 -39 39 63 29 18 -27 -57]] | 6.772 | 91/90 169/168 176/175 1331/1323 | |
21 | <<25 19 7 -1 16 -28 -59 -88 -67 -37 -68 -33 -27 19 59]] | 8.616 | 126/125 169/168 364/363 1716/1715 | |
22 | <<22 2 8 12 38 -48 -49 -57 -21 13 21 81 6 77 87]] | 7.885 | 91/90 121/120 176/175 7203/7150 | |
23 | <<23 23 23 23 0 -17 -28 -43 -85 -11 -26 -85 -15 -85 -85]] | 8.071 | 121/120 126/125 196/195 3549/3520 |