6650edo
Jump to navigation
Jump to search
Prime factorization
2 × 52 × 7 × 19
Step size
0.180451¢
Fifth
3890\6650 (701.955¢) (→389\665)
Semitones (A1:m2)
630:500 (113.7¢ : 90.23¢)
Consistency limit
15
Distinct consistency limit
15
← 6649edo | 6650edo | 6651edo → |
6650 equal divisions of the octave (6650edo), or 6650-tone equal temperament (6650tet), 6650 equal temperament (6650et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 6650 equal parts of about 0.18 ¢ each.
Theory
This system is consistent up to the 15-odd-limit.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.0000 | -0.0001 | +0.0322 | +0.0162 | -0.0397 | +0.0137 | +0.0671 | +0.0509 | +0.0565 | +0.0769 | -0.0732 |
relative (%) | +0 | -0 | +18 | +9 | -22 | +8 | +37 | +28 | +31 | +43 | -41 | |
Steps (reduced) |
6650 (0) |
10540 (3890) |
15441 (2141) |
18669 (5369) |
23005 (3055) |
24608 (4658) |
27182 (582) |
28249 (1649) |
30082 (3482) |
32306 (5706) |
32945 (6345) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it.