56ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 55ed7/3 56ed7/3 57ed7/3 →
Prime factorization 23 × 7
Step size 26.1941¢ 
Octave 46\56ed7/3 (1204.93¢) (→23\28ed7/3)
Twelfth 73\56ed7/3 (1912.17¢)
Consistency limit 4
Distinct consistency limit 4

56 equal divisions of 7/3 (abbreviated 56ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 56 equal parts of about 26.2⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/56, or the 56th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 26.2
2 52.4 31/30, 34/33
3 78.6 23/22
4 104.8 33/31
5 131 14/13
6 157.2 34/31
7 183.4
8 209.6
9 235.7 8/7
10 261.9
11 288.1
12 314.3
13 340.5
14 366.7 26/21
15 392.9
16 419.1
17 445.3 22/17
18 471.5 21/16
19 497.7 4/3
20 523.9 19/14, 23/17
21 550.1
22 576.3
23 602.5
24 628.7 33/23
25 654.9 19/13
26 681 34/23
27 707.2
28 733.4 29/19, 32/21
29 759.6 31/20
30 785.8
31 812
32 838.2 13/8
33 864.4 33/20
34 890.6
35 916.8 17/10
36 943
37 969.2 7/4
38 995.4 16/9
39 1021.6
40 1047.8
41 1074 13/7
42 1100.2
43 1126.3
44 1152.5 33/17
45 1178.7
46 1204.9
47 1231.1
48 1257.3 29/14, 31/15
49 1283.5
50 1309.7
51 1335.9 13/6
52 1362.1 11/5
53 1388.3 29/13
54 1414.5 34/15
55 1440.7 23/10
56 1466.9 7/3

Harmonics

Approximation of harmonics in 56ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.9 +10.2 +9.9 -9.7 -11.0 +10.2 -11.4 -5.8 -4.8 -12.6 -6.1
Relative (%) +18.8 +39.0 +37.6 -37.2 -42.2 +39.0 -43.5 -22.0 -18.4 -48.3 -23.4
Steps
(reduced)
46
(46)
73
(17)
92
(36)
106
(50)
118
(6)
129
(17)
137
(25)
145
(33)
152
(40)
158
(46)
164
(52)
Approximation of harmonics in 56ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +12.5 -11.0 +0.5 -6.5 -6.7 -0.8 +10.3 +0.1 -5.8 -7.7 -6.1
Relative (%) +47.6 -42.2 +1.8 -24.7 -25.4 -3.2 +39.5 +0.5 -22.0 -29.5 -23.3
Steps
(reduced)
170
(2)
174
(6)
179
(11)
183
(15)
187
(19)
191
(23)
195
(27)
198
(30)
201
(33)
204
(36)
207
(39)