51ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 50ed7/3 51ed7/3 52ed7/3 →
Prime factorization 3 × 17
Step size 28.7622¢ 
Octave 42\51ed7/3 (1208.01¢) (→14\17ed7/3)
Twelfth 66\51ed7/3 (1898.3¢) (→22\17ed7/3)
Consistency limit 3
Distinct consistency limit 3

51 equal divisions of 7/3 (abbreviated 51ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 51 equal parts of about 28.8⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/51, or the 51st root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 28.8
2 57.5 29/28, 30/29, 31/30
3 86.3
4 115 15/14, 31/29
5 143.8 25/23
6 172.6 21/19, 31/28
7 201.3 28/25
8 230.1
9 258.9 22/19, 29/25
10 287.6 13/11
11 316.4 6/5
12 345.1 11/9, 28/23
13 373.9 26/21, 31/25
14 402.7 29/23
15 431.4 9/7
16 460.2 30/23
17 489
18 517.7 31/23
19 546.5 26/19
20 575.2
21 604 17/12, 27/19
22 632.8 13/9
23 661.5 19/13, 22/15
24 690.3
25 719.1
26 747.8
27 776.6
28 805.3
29 834.1 21/13
30 862.9 23/14, 28/17
31 891.6
32 920.4 17/10, 29/17
33 949.2 19/11, 26/15
34 977.9 30/17
35 1006.7 25/14
36 1035.4 31/17
37 1064.2
38 1093
39 1121.7 21/11, 23/12
40 1150.5
41 1179.2
42 1208
43 1236.8
44 1265.5 25/12, 27/13, 29/14
45 1294.3 19/9
46 1323.1 15/7
47 1351.8
48 1380.6 31/14
49 1409.3
50 1438.1 23/10
51 1466.9 7/3

Harmonics

Approximation of harmonics in 51ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +8.0 -3.7 -12.7 +3.6 +4.4 -3.7 -4.7 -7.3 +11.6 -9.6 +12.4
Relative (%) +27.9 -12.7 -44.3 +12.6 +15.2 -12.7 -16.4 -25.4 +40.4 -33.3 +43.0
Steps
(reduced)
42
(42)
66
(15)
83
(32)
97
(46)
108
(6)
117
(15)
125
(23)
132
(30)
139
(37)
144
(42)
150
(48)
Approximation of harmonics in 51ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -11.2 +4.4 -0.0 +3.3 +13.4 +0.7 -6.6 -9.1 -7.3 -1.6 +7.8
Relative (%) -38.8 +15.2 -0.1 +11.4 +46.5 +2.5 -23.0 -31.7 -25.4 -5.4 +27.0
Steps
(reduced)
154
(1)
159
(6)
163
(10)
167
(14)
171
(18)
174
(21)
177
(24)
180
(27)
183
(30)
186
(33)
189
(36)