17ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 16ed7/317ed7/318ed7/3 →
Prime factorization 17 (prime)
Step size 86.2865¢ 
Octave 14\17ed7/3 (1208.01¢)
Twelfth 22\17ed7/3 (1898.3¢)
(semiconvergent)
Consistency limit 6
Distinct consistency limit 3

17 equal divisions of 7/3 (abbreviated 17ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 17 equal parts of about 86.3 ¢ each. Each step represents a frequency ratio of (7/3)1/17, or the 17th root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 86.287 17/16, 18/17, 19/18, 20/19, 21/20, 22/21, 23/22, 24/23
2 172.573 10/9, 11/10, 21/19, 23/21
3 258.86 7/6, 15/13, 22/19, 23/20
4 345.146 11/9, 17/14, 23/19
5 431.433 9/7, 14/11, 22/17, 23/18
6 517.719 15/11, 19/14, 23/17
7 604.006 10/7, 17/12, 24/17
8 690.292 3/2
9 776.579 11/7, 14/9, 19/12
10 862.865 18/11, 23/14
11 949.152 12/7, 19/11
12 1035.438 9/5, 11/6, 20/11
13 1121.725 19/10, 21/11, 23/12
14 1208.011 2/1
15 1294.298 17/8, 19/9, 21/10, 23/11
16 1380.584 11/5, 20/9
17 1466.871 7/3

Harmonics

Approximation of harmonics in 17ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +8.0 -3.7 +16.0 -25.1 +4.4 -3.7 +24.0 -7.3 -17.1 -9.6 +12.4
Relative (%) +9.3 -4.2 +18.6 -29.1 +5.1 -4.2 +27.9 -8.5 -19.9 -11.1 +14.3
Steps
(reduced)
14
(14)
22
(5)
28
(11)
32
(15)
36
(2)
39
(5)
42
(8)
44
(10)
46
(12)
48
(14)
50
(16)
Approximation of harmonics in 17ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -39.9 +4.4 -28.8 +32.0 +13.4 +0.7 -6.6 -9.1 -7.3 -1.6 +7.8
Relative (%) -46.3 +5.1 -33.4 +37.1 +15.5 +0.8 -7.7 -10.6 -8.5 -1.8 +9.0
Steps
(reduced)
51
(0)
53
(2)
54
(3)
56
(5)
57
(6)
58
(7)
59
(8)
60
(9)
61
(10)
62
(11)
63
(12)