17ed7/3
Jump to navigation
Jump to search
Prime factorization
17 (prime)
Step size
86.2865¢
Octave
14\17ed7/3 (1208.01¢)
Twelfth
22\17ed7/3 (1898.3¢)
(semiconvergent)
Consistency limit
6
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 16ed7/3 | 17ed7/3 | 18ed7/3 → |
(semiconvergent)
17 equal divisions of 7/3 (abbreviated 17ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 17 equal parts of about 86.3 ¢ each. Each step represents a frequency ratio of (7/3)1/17, or the 17th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 86.287 | 17/16, 18/17, 19/18, 20/19, 21/20, 22/21, 23/22, 24/23 |
2 | 172.573 | 10/9, 11/10, 21/19, 23/21 |
3 | 258.86 | 7/6, 15/13, 22/19, 23/20 |
4 | 345.146 | 11/9, 17/14, 23/19 |
5 | 431.433 | 9/7, 14/11, 22/17, 23/18 |
6 | 517.719 | 15/11, 19/14, 23/17 |
7 | 604.006 | 10/7, 17/12, 24/17 |
8 | 690.292 | 3/2 |
9 | 776.579 | 11/7, 14/9, 19/12 |
10 | 862.865 | 18/11, 23/14 |
11 | 949.152 | 12/7, 19/11 |
12 | 1035.438 | 9/5, 11/6, 20/11 |
13 | 1121.725 | 19/10, 21/11, 23/12 |
14 | 1208.011 | 2/1 |
15 | 1294.298 | 17/8, 19/9, 21/10, 23/11 |
16 | 1380.584 | 11/5, 20/9 |
17 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.0 | -3.7 | +16.0 | -25.1 | +4.4 | -3.7 | +24.0 | -7.3 | -17.1 | -9.6 | +12.4 |
Relative (%) | +9.3 | -4.2 | +18.6 | -29.1 | +5.1 | -4.2 | +27.9 | -8.5 | -19.9 | -11.1 | +14.3 | |
Steps (reduced) |
14 (14) |
22 (5) |
28 (11) |
32 (15) |
36 (2) |
39 (5) |
42 (8) |
44 (10) |
46 (12) |
48 (14) |
50 (16) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -39.9 | +4.4 | -28.8 | +32.0 | +13.4 | +0.7 | -6.6 | -9.1 | -7.3 | -1.6 | +7.8 |
Relative (%) | -46.3 | +5.1 | -33.4 | +37.1 | +15.5 | +0.8 | -7.7 | -10.6 | -8.5 | -1.8 | +9.0 | |
Steps (reduced) |
51 (0) |
53 (2) |
54 (3) |
56 (5) |
57 (6) |
58 (7) |
59 (8) |
60 (9) |
61 (10) |
62 (11) |
63 (12) |