41ed4

From Xenharmonic Wiki
Jump to navigation Jump to search
← 39ed441ed443ed4 →
Prime factorization 41 (prime)
Step size 58.5366¢ 
Octave 21\41ed4 (1229.27¢)
Twelfth 32\41ed4 (1873.17¢)
Consistency limit 1
Distinct consistency limit 1

41ed4 is the equal division of the double octave into 41 parts of 58.54 cents each, corresponding to 20.5edo or every second step of 41edo.

The Kite Guitar (see also KiteGuitar.com and Kite Tuning) is a guitar fretting using every other step of 41edo, i.e. 41ed4 or "20½-edo". However, the interval between two adjacent open strings is always an odd number of 41-edosteps. Thus each string only covers 41ed4, but the full edo can be found on every pair of adjacent strings.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 58.537 30/29
2 117.073
3 175.61 21/19
4 234.146
5 292.683 13/11
6 351.22
7 409.756 19/15
8 468.293 17/13
9 526.829 23/17
10 585.366 7/5
11 643.902
12 702.439
13 760.976
14 819.512
15 878.049
16 936.585 12/7
17 995.122
18 1053.659 11/6
19 1112.195
20 1170.732
21 1229.268
22 1287.805
23 1346.341
24 1404.878
25 1463.415
26 1521.951 12/5, 29/12
27 1580.488 5/2
28 1639.024
29 1697.561
30 1756.098
31 1814.634
32 1873.171
33 1931.707
34 1990.244 19/6
35 2048.78
36 2107.317
37 2165.854 7/2
38 2224.39
39 2282.927
40 2341.463
41 2400

Harmonics

Approximation of harmonics in 41ed4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +29.3 -28.8 +0.0 +23.4 +0.5 +26.3 +29.3 +1.0 -5.8 +4.8 -28.8
Relative (%) +50.0 -49.2 +0.0 +40.0 +0.8 +44.9 +50.0 +1.7 -10.0 +8.2 -49.2
Steps
(reduced)
21
(21)
32
(32)
41
(0)
48
(7)
53
(12)
58
(17)
62
(21)
65
(24)
68
(27)
71
(30)
73
(32)
Approximation of harmonics in 41ed4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +8.3 -3.0 -5.3 +0.0 +12.1 -28.3 -4.8 +23.4 -2.5 -24.5 +15.6
Relative (%) +14.1 -5.1 -9.1 +0.0 +20.7 -48.3 -8.3 +40.0 -4.3 -41.8 +26.7
Steps
(reduced)
76
(35)
78
(37)
80
(39)
82
(0)
84
(2)
85
(3)
87
(5)
89
(7)
90
(8)
91
(9)
93
(11)