41ed4

From Xenharmonic Wiki
Jump to navigation Jump to search
← 39ed4 41ed4 43ed4 →
Prime factorization 41 (prime)
Step size 58.5366¢ 
Octave 21\41ed4 (1229.27¢)
Twelfth 32\41ed4 (1873.17¢)
Consistency limit 1
Distinct consistency limit 1

41ed4 is the equal division of the double octave into 41 parts of 58.54 cents each, corresponding to 20.5edo or every second step of 41edo.

The Kite Guitar (see also KiteGuitar.com and Kite Tuning) is a guitar fretting using every other step of 41edo, i.e. 41ed4 or "20½-edo". However, the interval between two adjacent open strings is always an odd number of 41-edosteps. Thus each string only covers 41ed4, but the full edo can be found on every pair of adjacent strings.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 58.5 30/29
2 117.1
3 175.6 21/19
4 234.1
5 292.7 13/11
6 351.2
7 409.8 19/15
8 468.3 17/13
9 526.8 23/17
10 585.4 7/5
11 643.9
12 702.4
13 761
14 819.5
15 878
16 936.6 12/7
17 995.1
18 1053.7 11/6
19 1112.2
20 1170.7
21 1229.3
22 1287.8
23 1346.3
24 1404.9
25 1463.4
26 1522 12/5, 29/12
27 1580.5 5/2
28 1639
29 1697.6
30 1756.1
31 1814.6
32 1873.2
33 1931.7
34 1990.2 19/6
35 2048.8
36 2107.3
37 2165.9 7/2
38 2224.4
39 2282.9
40 2341.5
41 2400

Harmonics

Approximation of harmonics in 41ed4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +29.3 -28.8 +0.0 +23.4 +0.5 +26.3 +29.3 +1.0 -5.8 +4.8 -28.8
Relative (%) +50.0 -49.2 +0.0 +40.0 +0.8 +44.9 +50.0 +1.7 -10.0 +8.2 -49.2
Steps
(reduced)
21
(21)
32
(32)
41
(0)
48
(7)
53
(12)
58
(17)
62
(21)
65
(24)
68
(27)
71
(30)
73
(32)
Approximation of harmonics in 41ed4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +8.3 -3.0 -5.3 +0.0 +12.1 -28.3 -4.8 +23.4 -2.5 -24.5 +15.6
Relative (%) +14.1 -5.1 -9.1 +0.0 +20.7 -48.3 -8.3 +40.0 -4.3 -41.8 +26.7
Steps
(reduced)
76
(35)
78
(37)
80
(39)
82
(0)
84
(2)
85
(3)
87
(5)
89
(7)
90
(8)
91
(9)
93
(11)