21ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 20ed7/421ed7/422ed7/4 →
Prime factorization 3 × 7
Step size 46.1346¢ 
Octave 26\21ed7/4 (1199.5¢)
(convergent)
Twelfth 41\21ed7/4 (1891.52¢)
(semiconvergent)
Consistency limit 14
Distinct consistency limit 3

21 equal divisions of 7/4 (abbreviated 21ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 21 equal parts of about 46.1 ¢ each. Each step represents a frequency ratio of (7/4)1/21, or the 21st root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 46.135
2 92.269 17/16, 18/17, 19/18, 20/19, 21/20, 22/21
3 138.404 12/11, 13/12, 14/13
4 184.538 10/9, 19/17, 21/19
5 230.673 8/7, 17/15
6 276.807 7/6, 13/11, 20/17
7 322.942 6/5, 17/14
8 369.077 16/13, 21/17
9 415.211 14/11, 19/15, 24/19
10 461.346 13/10, 17/13, 21/16, 22/17, 25/19
11 507.48 4/3
12 553.615 11/8, 18/13, 25/18
13 599.749 17/12, 24/17
14 645.884 13/9, 16/11, 19/13
15 692.019 3/2
16 738.153 20/13
17 784.288 11/7, 19/12
18 830.422 13/8, 21/13
19 876.557 5/3
20 922.691 12/7, 17/10, 22/13
21 968.826 7/4

Harmonics

Approximation of harmonics in 21ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.5 -10.4 -1.0 -18.2 -10.9 -1.0 -1.5 -20.9 -18.7 +0.8 -11.4
Relative (%) -1.1 -22.6 -2.2 -39.5 -23.7 -2.2 -3.3 -45.2 -40.6 +1.7 -24.8
Steps
(reduced)
26
(5)
41
(20)
52
(10)
60
(18)
67
(4)
73
(10)
78
(15)
82
(19)
86
(2)
90
(6)
93
(9)
Approximation of harmonics in 21ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -11.6 -1.5 +17.5 -2.0 -14.7 -21.4 -22.7 -19.2 -11.4 +0.3 +15.6
Relative (%) -25.2 -3.3 +37.8 -4.3 -31.8 -46.3 -49.2 -41.7 -24.8 +0.6 +33.8
Steps
(reduced)
96
(12)
99
(15)
102
(18)
104
(20)
106
(1)
108
(3)
110
(5)
112
(7)
114
(9)
116
(11)
118
(13)