16ed9/5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 15ed9/5 16ed9/5 17ed9/5 →
Prime factorization 24
Step size 63.5998¢ 
Octave 19\16ed9/5 (1208.4¢)
Twelfth 30\16ed9/5 (1907.99¢) (→15\8ed9/5)
Consistency limit 10
Distinct consistency limit 3

16 equal divisions of 9/5 (abbreviated 16ed9/5) is a nonoctave tuning system that divides the interval of 9/5 into 16 equal parts of about 63.6⁠ ⁠¢ each. Each step represents a frequency ratio of (9/5)1/16, or the 16th root of 9/5.

Theory

16ed9/5 represents the lower bound of the phoenix tuning range. 16ed9/5 benefits from all the desirable properties of phoenix tuning systems.

This tuning tempers out 49/48 in the 7-limit; 33/32 and 55/54 in the 11-limit; 65/64 and 66/65 in the 13-limit; 51/50 in the 17-limit; 57/56 in the 19-limit; and 46/45 in the 23-limit.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 63.6 22/21, 23/22
2 127.2 13/12, 14/13, 15/14, 16/15
3 190.8 9/8, 10/9, 19/17, 21/19
4 254.4 7/6, 15/13, 22/19
5 318 6/5, 17/14, 23/19
6 381.6 5/4, 21/17
7 445.2 9/7, 13/10, 17/13, 22/17
8 508.8 4/3, 19/14, 23/17
9 572.4 7/5, 18/13
10 636 10/7, 13/9
11 699.6 3/2
12 763.2 11/7, 14/9, 17/11, 20/13
13 826.8 8/5, 13/8, 21/13
14 890.4 5/3, 22/13
15 954 7/4, 19/11
16 1017.6 9/5

Harmonics

Approximation of harmonics in 16ed9/5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +8.4 +6.0 +16.8 +12.1 +14.4 +2.0 +25.2 +12.1 +20.5 -17.3 +22.8
Relative (%) +13.2 +9.5 +26.4 +19.0 +22.7 +3.1 +39.6 +19.0 +32.2 -27.3 +35.9
Steps
(reduced)
19
(3)
30
(14)
38
(6)
44
(12)
49
(1)
53
(5)
57
(9)
60
(12)
63
(15)
65
(1)
68
(4)
Approximation of harmonics in 16ed9/5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +11.5 +10.4 +18.1 -30.0 -7.8 +20.5 -9.5 +28.9 +8.0 -8.9 -22.3
Relative (%) +18.0 +16.3 +28.5 -47.2 -12.2 +32.2 -15.0 +45.4 +12.6 -14.1 -35.1
Steps
(reduced)
70
(6)
72
(8)
74
(10)
75
(11)
77
(13)
79
(15)
80
(0)
82
(2)
83
(3)
84
(4)
85
(5)