1337edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1336edo1337edo1338edo →
Prime factorization 7 × 191
Step size 0.897532¢
Fifth 782\1337 (701.87¢)
Semitones (A1:m2) 126:101 (113.1¢ : 90.65¢)
Consistency limit 13
Distinct consistency limit 13

1337 equal divisions of the octave (1337edo), or 1337-tone equal temperament (1337tet), 1337 equal temperament (1337et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 1337 equal parts of about 0.898 ¢ each.

Theory

Approximation of odd harmonics in 1337edo
Harmonic 3 5 7 9 11 13 15 17 19 21
Error absolute (¢) -0.085 -0.375 -0.389 -0.170 -0.233 -0.438 +0.437 +0.056 -0.430 +0.423
relative (%) -9 -42 -43 -19 -26 -49 +49 +6 -48 +47
Steps
(reduced)
2119
(782)
3104
(430)
3753
(1079)
4238
(227)
4625
(614)
4947
(936)
5224
(1213)
5465
(117)
5679
(331)
5873
(525)

1337 factors as 7 * 191.

In the 7-limit on the patent val, 1337edo supports tertiaseptal. In the 11-limit on the patent val, it supports hemitert.