# 1337edo

← 1336edo | 1337edo | 1338edo → |

**1337 equal divisions of the octave** (abbreviated **1337edo** or **1337ed2**), also called **1337-tone equal temperament** (**1337tet**) or **1337 equal temperament** (**1337et**) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1337 equal parts of about 0.898 ¢ each. Each step represents a frequency ratio of 2^{1/1337}, or the 1337th root of 2.

1337edo is consistent to the 13-odd-limit, although the errors of harmonics 5, 7, and 13 are quite large. The equal temperament tempers out 2401/2400 (breedsma), 65625/65536 (horwell comma) and 703125/702464 (meter) in the 7-limit, so that it supports tertiaseptal. In the 11-limit it tempers out 3025/3024 and 41503/41472, so that it supports hemitert.

### Odd harmonics

Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Error | Absolute (¢) | -0.085 | -0.375 | -0.389 | -0.170 | -0.233 | -0.438 | +0.437 | +0.056 | -0.430 | +0.423 | -0.002 |

Relative (%) | -9.5 | -41.8 | -43.4 | -19.0 | -26.0 | -48.8 | +48.7 | +6.2 | -47.9 | +47.2 | -0.2 | |

Steps (reduced) |
2119 (782) |
3104 (430) |
3753 (1079) |
4238 (227) |
4625 (614) |
4947 (936) |
5224 (1213) |
5465 (117) |
5679 (331) |
5873 (525) |
6048 (700) |

### Subsets and supersets

Since 1337 factors into 7 × 191, 1337edo contains 7edo and 191edo as subsets.