1337edo
Jump to navigation
Jump to search
Prime factorization
7 × 191
Step size
0.897532¢
Fifth
782\1337 (701.87¢)
Semitones (A1:m2)
126:101 (113.1¢ : 90.65¢)
Consistency limit
13
Distinct consistency limit
13
← 1336edo | 1337edo | 1338edo → |
1337 equal divisions of the octave (1337edo), or 1337-tone equal temperament (1337tet), 1337 equal temperament (1337et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 1337 equal parts of about 0.898 ¢ each.
1337edo is consistent to the 13-odd-limit, although the errors of harmonics 5, 7, and 13 are quite large. The equal temperament tempers out 2401/2400 (breedsma), 65625/65536 (horwell comma) and 703125/702464 (meter) in the 7-limit, so that it supports tertiaseptal. In the 11-limit it tempers out 3025/3024 and 41503/41472, so that it supports hemitert.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | -0.085 | -0.375 | -0.389 | -0.170 | -0.233 | -0.438 | +0.437 | +0.056 | -0.430 | +0.423 | -0.002 |
relative (%) | -9 | -42 | -43 | -19 | -26 | -49 | +49 | +6 | -48 | +47 | -0 | |
Steps (reduced) |
2119 (782) |
3104 (430) |
3753 (1079) |
4238 (227) |
4625 (614) |
4947 (936) |
5224 (1213) |
5465 (117) |
5679 (331) |
5873 (525) |
6048 (700) |
Subsets and supersets
Since 1337 factors into 7 × 191, 1337edo contains 7edo and 191edo as subsets.