11ed13/9
Jump to navigation
Jump to search
Prime factorization
11 (prime)
Step size
57.8743¢
Octave
21\11ed13/9 (1215.36¢)
Twelfth
33\11ed13/9 (1909.85¢) (→3\1ed13/9)
Consistency limit
3
Distinct consistency limit
2
← 10ed13/9 | 11ed13/9 | 12ed13/9 → |
11ED13/9 is the equal division of the tridecimal high tritone (13/9) into eleven parts of 57.8743 cents each, corresponding to 20.7346 edo. It is related to 13-limit temperaments which temper out 10648/10647, 41503/41472, and 59535/59488.
Intervals
degree | cents value | ratio |
---|---|---|
0 | 0.0000 | 1/1 |
1 | 57.8743 | (13/9)1/11 |
2 | 115.7487 | (13/9)2/11 |
3 | 173.6230 | (13/9)3/11 |
4 | 231.4973 | (13/9)4/11 |
5 | 289.3717 | (13/9)5/11 |
6 | 347.2460 | (13/9)6/11 |
7 | 405.1203 | (13/9)7/11 |
8 | 462.9947 | (13/9)8/11 |
9 | 520.8690 | (13/9)9/11 |
10 | 578.7433 | (13/9)10/11 |
11 | 636.6177 | 13/9 |
12 | 694.4920 | (13/9)12/11 |
13 | 752.3663 | (13/9)13/11 |
14 | 810.2407 | (13/9)14/11 |
15 | 868.1150 | (13/9)15/11 |
16 | 925.9893 | (13/9)16/11 |
17 | 983.8637 | (13/9)17/11 |
18 | 1041.7380 | (13/9)18/11 |
19 | 1099.6123 | (13/9)19/11 |
20 | 1157.4867 | (13/9)20/11 |
21 | 1215.3610 | (13/9)21/11 |
22 | 1273.2353 | (13/9)2 = 169/81 |
23 | 1331.1097 | (13/9)23/11 |
24 | 1388.9840 | (13/9)24/11 |
25 | 1446.8583 | (13/9)25/11 |
26 | 1504.7327 | (13/9)26/11 |
27 | 1562.6070 | (13/9)27/11 |
28 | 1620.4813 | (13/9)28/11 |
29 | 1678.3556 | (13/9)29/11 |
30 | 1736.2300 | (13/9)30/11 |
31 | 1794.1043 | (13/9)31/11 |
32 | 1851.9786 | (13/9)32/11 |
33 | 1909.8530 | (13/9)3 = 2197/729 |
34 | 1967.7273 | (13/9)34/11 |
35 | 2025.6016 | (13/9)35/11 |
36 | 2083.4760 | (13/9)36/11 |
37 | 2141.3503 | (13/9)37/11 |
38 | 2199.2246 | (13/9)38/11 |
39 | 2257.0990 | (13/9)39/11 |
40 | 2314.9733 | (13/9)40/11 |
41 | 2372.8476 | (13/9)41/11 |
42 | 2430.7220 | (13/9)42/11 |
43 | 2488.5963 | (13/9)43/11 |
44 | 2546.4706 | (13/9)4 = 28561/6561 |
45 | 2604.3450 | (13/9)45/11 |
46 | 2662.2193 | (13/9)46/11 |
47 | 2720.0936 | (13/9)47/11 |
48 | 2777.9680 | (13/9)48/11 |
49 | 2835.8423 | (13/9)49/11 |
50 | 2893.7166 | (13/9)50/11 |
51 | 2951.5910 | (13/9)51/11 |
52 | 3009.4653 | (13/9)52/11 |
53 | 3067.3396 | (13/9)53/11 |
54 | 3125.2140 | (13/9)54/11 |
55 | 3183.0883 | (13/9)5 = 371293/59049 |
56 | 3240.9626 | (13/9)56/11 |
57 | 3298.8370 | (13/9)57/11 |
58 | 3356.7113 | (13/9)58/11 |
59 | 3414.5856 | (13/9)59/11 |
60 | 3472.4600 | (13/9)60/11 |
61 | 3530.3343 | (13/9)61/11 |
62 | 3588.2086 | (13/9)62/11 |
63 | 3646.0830 | (13/9)63/11 |
64 | 3703.9573 | (13/9)64/11 |
65 | 3761.8316 | (13/9)65/11 |
66 | 3819.7060 | (13/9)6 = 4826809/531441 |
67 | 3877.5803 | (13/9)67/11 |
68 | 3935.4546 | (13/9)68/11 |
69 | 3993.3290 | (13/9)69/11 |
70 | 4051.2033 | (13/9)70/11 |
71 | 4109.0776 | (13/9)71/11 |
72 | 4166.9520 | (13/9)72/11 |
73 | 4224.8263 | (13/9)73/11 |
74 | 4282.7006 | (13/9)74/11 |
75 | 4340.5750 | (13/9)75/11 |
76 | 4398.4493 | (13/9)76/11 |
77 | 4456.3236 | (13/9)7 = 62748517/4782969 |
78 | 4514.1980 | (13/9)78/11 |
79 | 4572.0723 | (13/9)79/11 |
80 | 4629.9466 | (13/9)80/11 |
81 | 4687.8210 | (13/9)81/11 |
82 | 4745.6953 | (13/9)82/11 |
83 | 4803.5696 | (13/9)83/11 |
84 | 4861.4439 | (13/9)84/11 |
85 | 4919.3183 | (13/9)85/11 |
86 | 4977.1926 | (13/9)86/11 |
87 | 5035.0669 | (13/9)87/11 |
88 | 5092.9413 | (13/9)8 = 815730721/43046721 |
Related temperaments
13-limit 166&311&373
Commas: 10648/10647, 41503/41472, 59535/59488
POTE generators: ~3/2 = 701.805, ~91/88 = 57.897
Mapping: [<1 0 -1 3 0 0|, <0 1 1 0 2 2|, <0 0 36 -4 6 11|]
EDOs: 62, 145, 166, 207, 311, 373, 518, 684, 829
13-limit 166&311
Commas: 1575/1573, 2080/2079, 2200/2197, 35035/34992
POTE generator: 571.061
Mapping: [<1 23 58 -1 52 57|, <0 -45 -117 8 -102 -112|]
EDOs: 145, 166, 311, 456f, 477c
Badness: 0.0401