11ed13/9

From Xenharmonic Wiki
Jump to navigation Jump to search
← 10ed13/911ed13/912ed13/9 →
Prime factorization 11 (prime)
Step size 57.8743¢ 
Octave 21\11ed13/9 (1215.36¢)
Twelfth 33\11ed13/9 (1909.85¢) (→3\1ed13/9)
Consistency limit 3
Distinct consistency limit 2

11ED13/9 is the equal division of the tridecimal high tritone (13/9) into eleven parts of 57.8743 cents each, corresponding to 20.7346 edo. It is related to 13-limit temperaments which temper out 10648/10647, 41503/41472, and 59535/59488.

Intervals

degree cents value ratio
0 0.0000 1/1
1 57.8743 (13/9)1/11
2 115.7487 (13/9)2/11
3 173.6230 (13/9)3/11
4 231.4973 (13/9)4/11
5 289.3717 (13/9)5/11
6 347.2460 (13/9)6/11
7 405.1203 (13/9)7/11
8 462.9947 (13/9)8/11
9 520.8690 (13/9)9/11
10 578.7433 (13/9)10/11
11 636.6177 13/9
12 694.4920 (13/9)12/11
13 752.3663 (13/9)13/11
14 810.2407 (13/9)14/11
15 868.1150 (13/9)15/11
16 925.9893 (13/9)16/11
17 983.8637 (13/9)17/11
18 1041.7380 (13/9)18/11
19 1099.6123 (13/9)19/11
20 1157.4867 (13/9)20/11
21 1215.3610 (13/9)21/11
22 1273.2353 (13/9)2 = 169/81
23 1331.1097 (13/9)23/11
24 1388.9840 (13/9)24/11
25 1446.8583 (13/9)25/11
26 1504.7327 (13/9)26/11
27 1562.6070 (13/9)27/11
28 1620.4813 (13/9)28/11
29 1678.3556 (13/9)29/11
30 1736.2300 (13/9)30/11
31 1794.1043 (13/9)31/11
32 1851.9786 (13/9)32/11
33 1909.8530 (13/9)3 = 2197/729
34 1967.7273 (13/9)34/11
35 2025.6016 (13/9)35/11
36 2083.4760 (13/9)36/11
37 2141.3503 (13/9)37/11
38 2199.2246 (13/9)38/11
39 2257.0990 (13/9)39/11
40 2314.9733 (13/9)40/11
41 2372.8476 (13/9)41/11
42 2430.7220 (13/9)42/11
43 2488.5963 (13/9)43/11
44 2546.4706 (13/9)4 = 28561/6561
45 2604.3450 (13/9)45/11
46 2662.2193 (13/9)46/11
47 2720.0936 (13/9)47/11
48 2777.9680 (13/9)48/11
49 2835.8423 (13/9)49/11
50 2893.7166 (13/9)50/11
51 2951.5910 (13/9)51/11
52 3009.4653 (13/9)52/11
53 3067.3396 (13/9)53/11
54 3125.2140 (13/9)54/11
55 3183.0883 (13/9)5 = 371293/59049
56 3240.9626 (13/9)56/11
57 3298.8370 (13/9)57/11
58 3356.7113 (13/9)58/11
59 3414.5856 (13/9)59/11
60 3472.4600 (13/9)60/11
61 3530.3343 (13/9)61/11
62 3588.2086 (13/9)62/11
63 3646.0830 (13/9)63/11
64 3703.9573 (13/9)64/11
65 3761.8316 (13/9)65/11
66 3819.7060 (13/9)6 = 4826809/531441
67 3877.5803 (13/9)67/11
68 3935.4546 (13/9)68/11
69 3993.3290 (13/9)69/11
70 4051.2033 (13/9)70/11
71 4109.0776 (13/9)71/11
72 4166.9520 (13/9)72/11
73 4224.8263 (13/9)73/11
74 4282.7006 (13/9)74/11
75 4340.5750 (13/9)75/11
76 4398.4493 (13/9)76/11
77 4456.3236 (13/9)7 = 62748517/4782969
78 4514.1980 (13/9)78/11
79 4572.0723 (13/9)79/11
80 4629.9466 (13/9)80/11
81 4687.8210 (13/9)81/11
82 4745.6953 (13/9)82/11
83 4803.5696 (13/9)83/11
84 4861.4439 (13/9)84/11
85 4919.3183 (13/9)85/11
86 4977.1926 (13/9)86/11
87 5035.0669 (13/9)87/11
88 5092.9413 (13/9)8 = 815730721/43046721

Related temperaments

13-limit 166&311&373

Commas: 10648/10647, 41503/41472, 59535/59488

POTE generators: ~3/2 = 701.805, ~91/88 = 57.897

Mapping: [<1 0 -1 3 0 0|, <0 1 1 0 2 2|, <0 0 36 -4 6 11|]

EDOs: 62, 145, 166, 207, 311, 373, 518, 684, 829

13-limit 166&311

Commas: 1575/1573, 2080/2079, 2200/2197, 35035/34992

POTE generator: 571.061

Mapping: [<1 23 58 -1 52 57|, <0 -45 -117 8 -102 -112|]

EDOs: 145, 166, 311, 456f, 477c

Badness: 0.0401