# 1001edo

Jump to navigation
Jump to search

1001edo divides the octave into parts of 1.(19880) cents each.

## Theory

Prime number | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Error | absolute (¢) | +0.000 | +0.543 | -0.300 | -0.195 | +0.131 | -0.168 | +0.539 | -0.210 | -0.103 | +0.193 | -0.180 | +0.404 | +0.108 | +0.370 | -0.172 |

relative (%) | +0 | +45 | -25 | -16 | +11 | -14 | +45 | -18 | -9 | +16 | -15 | +34 | +9 | +31 | -14 | |

Steps (reduced) | 1001 (0) | 1587 (586) | 2324 (322) | 2810 (808) | 3463 (460) | 3704 (701) | 4092 (88) | 4252 (248) | 4528 (524) | 4863 (859) | 4959 (955) | 5215 (210) | 5363 (358) | 5432 (427) | 5560 (555) |

1001 factorizes as 7 x 11 x 13, and therefore by extension it contains all these smaller EDOs. It's composite divisors are 77, 91, and 143.

The best prime subgroup for 1001edo is 2.7.11.13.19.23. In such a subgroup, it tempers out 14651/14641, 157757/157696, and 184877/184832. Taking the full 23-limit enables to determine that 1001edo tempers out 1288/1287, 2300/2299, 2737/2736, 2926/2925, and 5776/5775.

Using the 1001b val, that is putting the 3/2 fifth on the 585th step instead of the 586th, 1001edo tempers out 936/935, 1197/1196, and 1521/1520.