383edo

From Xenharmonic Wiki
Revision as of 18:41, 25 January 2022 by Cmloegcmluin (talk | contribs) (link to new page for Supports)
Jump to navigation Jump to search
← 382edo 383edo 384edo →
Prime factorization 383 (prime)
Step size 3.13316 ¢ 
Fifth 224\383 (701.828 ¢)
Semitones (A1:m2) 36:29 (112.8 ¢ : 90.86 ¢)
Consistency limit 15
Distinct consistency limit 15

The 383 equal divisions of the octave (383edo), or the 383(-tone) equal temperament (383tet, 383et) when viewed from a regular temperament perspective, is the equal division of the octave into 383 parts of about 3.13 cents each.

Theory

383edo is distinctly consistent through the 15-odd-limit with a flat tendency. It tempers out 32805/32768 (schisma) in the 5-limit; 2401/2400 in the 7-limit; 6250/6237, 4000/3993 and 3025/3024 in the 11-limit; and 625/624, 1575/1573 and 2080/2079 in the 13-limit and it supports sesquiquartififths.

383edo is the 76th prime edo.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-607 383 [383 607]] +0.0402 0.0402 1.28
2.3.5 32805/32768, [-8 -55 41 [383 607 889]] +0.1610 0.1741 5.55
2.3.5.7 2401/2400, 32805/32768, 68359375/68024448 [383 607 889 1075]] +0.1813 0.1548 4.94
2.3.5.7.11 2401/2400, 3025/3024, 4000/3993, 32805/32768 [383 607 889 1075 1325]] +0.1382 0.1631 5.20
2.3.5.7.11.13 625/624, 1575/1573, 2080/2079, 2401/2400, 10985/10976 [383 607 889 1075 1325 1417]] +0.1531 0.1525 4.87

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 56\383 175.46 448/405 Sesquiquartififths
1 133\373 416.71 14/11 Unthirds
1 159\383 498.17 4/3 Helmholtz