The 176 equal divisions of the octave (176edo), or the 176(-tone) equal temperament (176tet, 176et) when viewed from a regular temperament perspective, is the equal division of the octave into 176 parts of 6.8182 cents each.

Theory

176edo is consistent to the 11-odd-limit, tempering out 78732/78125 (sensipent comma) and [41 -20 -4 (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, and 8019/8000 in the 11-limit, supporting the bison temperament and the commatic temperament.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [279 -176 [176 279]] -0.100 0.100 1.47
2.3.5 78732/78125, [41 -20 -4 [176 279 409]] -0.400 0.432 6.34
2.3.5.7 6144/6125, 10976/10935, 50421/50000 [176 279 409 494]] -0.243 0.463 6.79
2.3.5.7.11 441/440, 3388/3375, 6144/6125, 8019/8000 [176 279 409 494 609]] -0.250 0.414 6.08
2.3.5.7.11.13 351/350, 364/363, 441/440, 2197/2187, 3146/3125 [176 279 409 494 609 651]] -0.123 0.473 6.93

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 17\176 115.91 77/72 Mercy / countermiracle / countermiraculous (176f) / counterbenediction (176)
1 35\176 238.64 147/128 Tokko
1 65\176 443.18 162/125 Sensipent
1 73\176 497.73 4/3 Gary / cotoneum
1 83\176 565.91 13/9 Tricot / trident
2 23\176 20.45 81/80 Commatic (176f)
2 23\176 156.82 35/32 Bison
8 83\176
(5\176)
565.91
(34.09)
168/121
(55/54)
Octowerck (176f)
11 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Hendecatonic
22 73\176
(1\176)
497.73
(6.82)
4/3
(385/384)
Icosidillic