961edo

From Xenharmonic Wiki
Revision as of 08:25, 20 October 2023 by FloraC (talk | contribs) (Rework theory; comma bases; formatting; clarify the title row of the rank-2 temp table)
Jump to navigation Jump to search
← 960edo 961edo 962edo →
Prime factorization 312
Step size 1.2487 ¢ 
Fifth 562\961 (701.769 ¢)
Semitones (A1:m2) 90:73 (112.4 ¢ : 91.16 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

The equal temperament tempers out 32805/32768 in the 5-limit; 4375/4374, 65625/65536, and 14348907/14336000 in the 7-limit. In the 11-limit, the 961e val 961 1523 2231 2698 3324] scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val 961 1523 2231 2697 3324], which tempers out 3025/3024 and 184877/184320. The patent val 961 1523 2231 2698 3325] tempers out 4000/3993 and 46656/46585.

Odd harmonics

Approximation of odd harmonics in 961edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.186 -0.466 +0.165 -0.372 +0.607 -0.153 +0.597 -0.065 -0.323 -0.021 -0.179
Relative (%) -14.9 -37.3 +13.2 -29.8 +48.6 -12.3 +47.8 -5.2 -25.8 -1.7 -14.3
Steps
(reduced)
1523
(562)
2231
(309)
2698
(776)
3046
(163)
3325
(442)
3556
(673)
3755
(872)
3928
(84)
4082
(238)
4221
(377)
4347
(503)

Subsets and supersets

Since 961 factors into 312, 961edo has 31edo as its subset edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-1523 961 [961 1523]] 0.0587 0.0587 4.70
2.3.5 32805/32768, [-22 -137 103 [961 1523 2231]] 0.1060 0.0823 6.59
2.3.5.7 4375/4374, 32805/32768, [15 9 14 -22 [961 1523 2231 2698]] 0.0648 0.1008 8.01

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio
Temperaments
1 399\961 498.231 4/3 Pontiac

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Scales