37th-octave temperaments

From Xenharmonic Wiki
Revision as of 14:18, 2 August 2023 by Eliora (talk | contribs)
Jump to navigation Jump to search

37edo has an extremely precise mapping for the 11th harmonic, and it is a strong 2.5.7.13 tuning besides that, therefore various 37th-octave temperaments occur naturally between any two numbers whose greatest common divisor is 37.

37-11-commatic (rank-1)

Subgroup: 2.11

Comma list: {{monzo|128 -37

Rubidium

The name of rubidium temperament comes from the 37th element. Developed by Xenllium, rubidium preserves the mappings for the 2.5.7.11.13 subgroup in 37edo and leaves the 3rd harmonic as a generator.

Subgroup: 2.3.5.7

Comma list: 3136/3125, 4194304/4117715

Mapping: [37 0 86 104], 0 1 0 0]]

Mapping generators: ~50/49, ~3

Optimal tuning (POTE): ~3/2 = 703.3903

Optimal ET sequence37, 74, 111

Badness: 0.312105

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 1375/1372, 65536/65219

Mapping: [37 0 86 104 128], 0 1 0 0 0]]

Optimal tuning (POTE): ~3/2 = 703.0355

Optimal ET sequence37, 74, 111

Badness: 0.101001

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 640/637, 847/845, 1375/1372

Mapping: [37 0 86 104 128 137], 0 1 0 0 0 0]]

Optimal tuning (POTE): ~3/2 = 703.0520

Optimal ET sequence37, 74, 111

Badness: 0.048732

Triacontaheptoid

Subgroup: 2.3.5.7

Comma list: 244140625/242121642, 283115520/282475249

Mapping: [37 2 67 85], 0 3 1 1]]

Mapping generator: ~50/49, ~24000/16807

Optimal tuning (CTE): ~24000/16807 = 612.4003

Optimal ET sequence37, 222b, 259b, 296, 629

Badness: 0.784746

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 4000/3993, 226492416/226474325

Mapping: [37 2 67 85 128], 0 3 1 1 0]]

Optimal tuning (CTE): ~768/359 = 612.4003

Optimal ET sequence37, 259b, 296, 629

Badness: 0.167327

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1375/1372, 4000/3993, 15379/15360

Mapping: [37 2 67 85 128 118], 0 3 1 1 0 1]]

Optimal tuning (CTE): ~462/325 = 612.4206

Optimal ET sequence37, 259b, 296, 629f

Badness: 0.076183

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 625/624, 715/714, 1225/1224, 4000/3993, 11271/11264

Mapping: [37 2 67 85 128 118 189], 0 3 1 1 0 1 -2]]

Optimal tuning (CTE): ~121/85 = 612.4187

Optimal ET sequence37, 259b, 296, 629f

Badness: 0.052475

Dzelic

Dzelic ['d͡zɛlɪk] is named after the Slavic letter dzelo, which represents the number 7, as it takes 7 generator grave minor thirds to reach the third harmonic.

Subgroup: 2.3.5.7

Comma list: 4375/4374, [-223 47 -11 62

Mapping: [37 0 -23 129], 0 7 13 -3]]

Mapping generators: ~[103 -18 3 -29 = 1\37, ~[96 -17 3 -27 = 271.709

Optimal tuning (CTE): ~[96 -17 3 -27 = 271.709

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 13423439799/13421772800, 113468578083/113379904000

Mapping: [37 0 -23 129 128], 0 7 13 -3 0]]

Mapping generators: ~3993/3920 = 1\37, ~11979/10240 = 271.709

Optimal tuning (CTE): ~11979/10240 = 271.709

13-limit

14 periods map to 13/10, thus equating a stack of three 11/8 with one 13/10 and making dzelic a jacobin temperament.

Subgroup: 2.3.5.7.11.13

Comma list: 4375/4374, 6656/6655, 405769/405504, 34034175/34027136

Mapping: [37 0 -23 129 128 28], 0 7 13 -3 0 13]]

Mapping generators: ~1248/1225 = 1\37, ~117/100 = 271.712

Optimal tuning (CTE): ~11979/10240 = 271.712

Optimal ET sequence296, 1369, 1665, ...