Catalog of rank-4 temperaments
A rank-4 temperament has a period and three additional independent generators. Typical examples include 7-limit JI, full 11-limit temperament with a one-dimensional comma basis, and full 13-limit temperament with a two-dimensional comma basis.
Ptolemismic (100/99)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 2], ⟨0 1 0 0 -2], ⟨0 0 1 0 2], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~3/2 = 704.9532, ~5/4 = 384.0675, ~7/4 = 970.8803
Badness: 0.0225 × 10-6
Biyatismic (121/120)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 1 0 2], ⟨0 1 1 0 1], ⟨0 0 -2 0 -1], ⟨0 0 0 1 0]]
Mapping generators: ~2, ~3, ~11/10, ~7
Optimal tuning (POTE): ~3/2 = 701.4578, ~11/10 = 157.7466, ~7/4 = 966.9589
Badness: 0.0345 × 10-6
Valinorsmic (176/175)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 -4], ⟨0 1 0 0 0], ⟨0 0 1 0 2], ⟨0 0 0 1 1]]
Mapping generators: ~2, ~3, ~5, ~7
Optimal tuning (POTE): ~3/2 = 703.0449, ~5/4 = 389.7641, ~7/4 = 972.1113
Badness: 0.0186 × 10-6
Rastmic (243/242)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 1 0 0 2], ⟨0 2 0 0 5], ⟨0 0 1 0 0], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~11/9 = 350.5254, ~5/4 = 386.1653, ~7/4 = 968.6464
Badness: 0.0509 × 10-6
Akua (352/351, 847/845)
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 847/845
Mapping: [⟨1 0 0 10 0 5], ⟨0 1 0 -6 0 -3], ⟨0 0 1 1 0 0], ⟨0 0 0 0 1 1]]
Mapping generators: ~2, ~3, ~5, ~11
Optimal tuning (POTE): ~3/2 = 702.9075, ~5/4 = 387.0723, ~11/8 = 551.4538
Badness: 2.550 × 10-6
Werckismic (441/440)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 -3], ⟨0 1 0 0 2], ⟨0 0 1 0 -1], ⟨0 0 0 1 2]]
Mapping generators:~2, ~3, ~5, ~7
Commas 364/363, 441/440
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440
Mapping: [⟨1 0 0 0 -3 -8], ⟨0 1 0 0 2 5], ⟨0 0 1 0 -1 -2], ⟨0 0 0 1 2 3]]
Mapping generators: ~2, ~3, ~5, ~7
Mapping to lattice: [⟨0 1 1 -1 -1 0], ⟨0 0 1 0 -1 -2], ⟨0 0 1 1 1 1]]
Lattice basis:
- 3/2 length = 1.2263, 14/11 length = 1.4629, 21/16 length = 1.4657
- [[1 0 0 0 0 0⟩, [5/3 0 1/3 -1/3 -1/3 1/3⟩, [1/6 0 5/6 2/3 -5/6 1/3⟩, [0 0 0 1 0 0⟩, [1/6 0 -1/6 2/3 1/6 1/3⟩, [0 0 0 0 0 1⟩]
- Eigenmonzos (unchanged-intervals): 2, 11/10, 8/7, 16/13
- [[1 0 0 0 0 0⟩, [5/4 1/4 1/4 -1/4 -1/4 1/4⟩, [5/4 -3/4 5/4 -1/4 -1/4 1/4⟩, [17/8 -11/8 5/8 -1/8 3/8 1/8⟩, [5/2 -3/2 1/2 -1/2 1/2 1/2⟩, [17/8 -11/8 5/8 -9/8 3/8 9/8⟩]
- Eigenmonzos (unchanged-intervals): 2, 14/13, 6/5, 11/9
Commas 351/350, 441/440
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 441/440
Mapping: [⟨1 0 0 0 -3 1], ⟨0 1 0 0 2 -3], ⟨0 0 1 0 -1 2], ⟨0 0 0 1 2 1]]
Mapping generators: ~2, ~3, ~5, ~7
Commas 196/195, 352/351
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351
Mapping: [⟨1 0 0 0 -3 2], ⟨0 1 0 0 2 -1], ⟨0 0 1 0 -1 -1], ⟨0 0 0 1 2 2]]
Mapping generators: ~2, ~3, ~5, ~7
Tannic
Subgroup: 2.3.5.7.11.13
Comma list: 441/440, 1287/1280
Mapping: [⟨1 0 0 0 -3 11], ⟨0 1 0 0 2 -4], ⟨0 0 1 0 -1 2], ⟨0 0 0 1 2 -2]]
Mapping generators: ~2, ~3, ~5, ~7
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 441/440, 561/560
Mapping: [⟨1 0 0 0 -3 11 7], ⟨0 1 0 0 2 -4 -3], ⟨0 0 1 0 -1 2 2], ⟨0 0 0 1 2 -2 -1]]
Mapping generators: ~2, ~3, ~5, ~7
Commas 441/440, 847/845
Subgroup: 2.3.5.7.11.13
Comma list: 441/440, 847/845
Mapping: [⟨1 0 0 0 -3 -3], ⟨0 1 0 0 2 2], ⟨0 0 1 1 1 1], ⟨0 0 0 2 4 5]]
Mapping generators: ~2, ~3, ~5, ~13/11
Keenanismic (385/384)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 7], ⟨0 1 0 0 1], ⟨0 0 1 0 -1], ⟨0 0 0 1 -1]]
Mapping generators: ~2, ~3, ~5, ~7
Transpose: [2 3 5 7 385/35]
- [[1 0 0 0 0⟩, [0 1 0 0 0⟩, [7/3 1/3 2/3 -1/3 -1/3⟩, [7/3 1/3 -1/3 2/3 -1/3⟩, [7/3 1/3 -1/3 -1/3 2/3⟩]
- Eigenmonzos (unchanged-intervals): 2, 3, 7/5, 11/5
Badness: 15.159 × 10-9
Martwin
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384
Mapping: [⟨1 0 0 0 7 2], ⟨0 1 0 0 1 4], ⟨0 0 1 0 -1 -2], ⟨0 0 0 1 -1 0]]
Mapping generators: ~2, ~3, ~5, ~7
Transpose: [2 3 5 7 385/35 324/25]
Lattice basis:
- 4/3 length = 1.0820, 6/5 length = 1.3935, 10/9 length = 1.6247
Minimax tuning: [to be confirmed]
- 13- and 15-odd-limit
- [⟨1 0 0 0 0 0], ⟨0 1 0 0 0 0], ⟨2/3 4/3 1/3 0 0 -1/3], ⟨19/6 -1/6 -1/6 1/2 -1/2 1/6], ⟨19/6 -1/6 -1/6 -1/2 1/2 1/6], ⟨2/3 4/3 -2/3 0 0 2/3]]
- Eigenmonzos (unchanged-intervals): 2, 14/11, 13/10, 4/3
Badness: 2.206 × 10-6
Ancient
Subgroup: 2.3.5.7.11.13
Comma list: 385/384, 625/624
Mapping: [⟨1 0 0 0 7 -4], ⟨0 1 0 0 1 -1], ⟨0 0 1 0 -1 4], ⟨0 0 0 1 -1 0]]
Transpose: [2 3 5 7 385/35 625/48]
Badness: 2.573 × 10-6
Commas 351/350, 385/384
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 385/384
Mapping: [⟨1 0 0 0 7 1], ⟨0 1 0 0 1 -3], ⟨0 0 1 0 -1 2], ⟨0 0 0 1 -1 1]]
Mapping generators: ~2, ~3, ~5, ~7
Commas 352/351, 385/384
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 385/384
Mapping: [⟨1 0 0 0 7 12], ⟨0 1 0 0 1 -2], ⟨0 0 1 0 -1 -1], ⟨0 0 0 1 -1 -1]]
Mapping generators: ~2, ~3, ~5, ~7
Commas 364/363, 385/384
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 385/384
Mapping: [⟨1 0 0 0 7 12], ⟨0 1 0 0 1 3], ⟨0 0 1 0 -1 -2], ⟨0 0 0 1 -1 -3]]
Mapping generators: ~2, ~3, ~5, ~7
Commas 385/384, 847/845
Subgroup: 2.3.5.7.11.13
Comma list: 385/384, 847/845
Mapping: [⟨1 0 0 0 7 7], ⟨0 1 0 0 1 1], ⟨0 0 1 1 -2 -2], ⟨0 0 0 2 -2 -1]]
Mapping generators: ~2, ~3, ~5, ~13/11
Swetismic (540/539)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 2], ⟨0 1 0 0 3], ⟨0 0 1 0 1], ⟨0 0 0 1 -2]]
Mapping generators: ~2, ~3, ~5, ~7
Commas 540/539, 847/845
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 847/845
Mapping: [⟨1 0 0 0 2 2], ⟨0 1 0 0 3 3], ⟨0 0 1 1 -1 -1], ⟨0 0 0 2 -4 -3]]
Mapping generators: ~2, ~3, ~5, ~13/11
Commas 540/539, 625/624
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 625/624
Mapping: [⟨1 0 0 0 2 -4], ⟨0 1 0 0 3 -1], ⟨0 0 1 0 1 4], ⟨0 0 0 1 -2 0]]
Mapping generators: ~2, ~3, ~5, ~7
Commas 540/539, 676/675
Subgroup: 2.3.5.7.11
Comma list: 540/539, 676/675
Mapping: [⟨1 0 0 0 2 -1], ⟨0 2 0 0 6 3], ⟨0 0 1 0 1 1], ⟨0 0 0 1 -2 0]]
Mapping generators: ~2, ~26/15, ~5, ~7
Pentacircle (896/891)
Subgroup: 2.3.5.7.11
Comma list: 896/891
Mapping: [⟨1 0 0 0 7], ⟨0 1 0 0 -4], ⟨0 0 1 0 0], ⟨0 0 0 1 1]]
Optimal tuning (POTE): ~3/2 = 703.8345, ~5/4 = 387.7585, ~7/4 = 969.8722
Badness: 0.0658 × 10-6
Commas 352/351, 364/363
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363
Mapping: [⟨1 0 0 0 7 12], ⟨0 1 0 0 -4 -7], ⟨0 0 1 0 0 0], ⟨0 0 0 1 1 1]]
Badness: 3.375 × 10-6
Topsy (847/845, 1001/1000)
Subgroup: 2.3.5.7.11.13
Comma list: 847/845, 1001/1000
Mapping: [⟨1 0 0 2 0 1], ⟨0 1 0 0 0 0], ⟨0 0 1 1 1 1], ⟨0 0 0 4 -3 1]]
Mapping generators: ~2, ~3, ~5, ~13/10
Lehmerismic (3025/3024)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 2], ⟨0 1 0 1 2], ⟨0 0 1 0 -1], ⟨0 0 0 2 1]]
Mapping generators: ~2, ~3, ~5, ~55/36
Trimitone (8019/8000)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 6], ⟨0 1 0 0 -6], ⟨0 0 1 0 3], ⟨0 0 0 1 0]]
Mapping generators: ~2, ~3, ~5, ~7
Kalismic (9801/9800)
Subgroup: 2.3.5.7.11
Mapping: [⟨2 0 0 0 3], ⟨0 1 0 0 -2], ⟨0 0 1 0 1], ⟨0 0 0 1 1]]
Mapping generators: ~99/70, ~3, ~5, ~7
Commas 1716/1715, 2080/2079
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079
Mapping: [⟨2 0 0 0 3 -7], ⟨0 1 0 0 -2 1], ⟨0 0 1 0 1 0], ⟨0 0 0 1 1 2]]
Mapping generators: ~99/70, ~3, ~5, ~7
Lattice basis:
- 3/2 length = 1.1956, 7/4 length = 1.4506, 14/13 length = 1.8299
- 13- and 15-odd-limit
- [[1 0 0 0 0 0⟩, [7/10 4/5 0 -2/5 0 1/5⟩, [7/10 -1/5 1 -2/5 0 1/5⟩, [7/5 -2/5 0 1/5 0 2/5⟩, [11/5 -11/5 1 3/5 0 1/5⟩, [0 0 0 0 0 1⟩]
- Eigenmonzos (unchanged-intervals): 2, 6/5, 16/13, 9/7
Semicanousmic (14641/14580)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 2 0 1], ⟨0 1 2 0 2], ⟨0 0 -4 0 -1], ⟨0 0 0 1 0]]
Mapping generators: ~2, ~3, ~18/11, ~7
Optimal tuning (POTE): ~3/2 = 702.2503, ~18/11 = 854.5421, ~7/4 = 968.6866
Badness: 0.351 × 10-6
Tridecimal semicanousmic
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 14641/14580
Mapping: [⟨1 0 2 0 1 -6], ⟨0 1 2 0 2 3], ⟨0 0 -4 0 -1 3], ⟨0 0 0 1 0 1]]
Optimal tuning (POTE): ~3/2 = 702.4931, ~18/11 = 854.6400, ~7/4 = 969.0099
Optimal GPV sequence: Template:Val list
Badness: 17.1 × 10-6
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 715/714, 1089/1088, 14641/14580
Mapping: [⟨1 0 2 0 1 -6 -4], ⟨0 1 2 0 2 3 6], ⟨0 0 -4 0 -1 3 -2], ⟨0 0 0 1 0 1 0]]
Optimal tuning (POTE): ~3/2 = 702.4099, ~18/11 = 854.6338, ~7/4 = 969.0228
Optimal GPV sequence: Template:Val list
Badness: 34.0 × 10-6
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 715/714, 1089/1088, 1216/1215, 1445/1444
Mapping: [⟨1 0 2 0 1 -6 -4 -4], ⟨0 1 2 0 2 3 6 7], ⟨0 0 -4 0 -1 3 -2 -4], ⟨0 0 0 1 0 1 0 0]]
Optimal tuning (POTE): ~3/2 = 702.3413, ~18/11 = 854.6472, ~7/4 = 968.9734
Optimal GPV sequence: Template:Val list
Badness: 41.9 × 10-6
Semiporwellismic (16384/16335)
Symbiotic (19712/19683)
Subgroup: 2.3.5.7.11
Comma list: 19712/19683
Mapping: [⟨1 0 0 0 -8], ⟨0 1 0 0 9], ⟨0 0 1 0 0], ⟨0 0 0 1 -1]]
Mapping generators: ~2, ~3, ~5, ~7
Optimal tuning (POTE): ~3/2 = 702.2681, ~5/4 = 386.4785, ~7/4 = 968.9552
Badness: 0.120 × 10-6
Tridecimal symbiotic
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 19712/19683
Mapping: [⟨1 0 0 0 -8 -13], ⟨0 1 0 0 9 12], ⟨0 0 1 0 0 -1], ⟨0 0 0 1 -1 0]]
Optimal tuning (POTE): ~3/2 = 702.2721, ~5/4 = 386.4790, ~7/4 = 968.9705
Badness: 3.31 × 10-6
Olympic (131072/130977)
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 0 0 17], ⟨0 1 0 0 -5], ⟨0 0 1 0 0], ⟨0 0 0 1 -2]]
Mapping generators: ~2, ~3, ~5, ~7
Tridecimal olympic
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 4096/4095
Mapping: [⟨1 0 0 0 17 12], ⟨0 1 0 0 -5 -2], ⟨0 0 1 0 0 -1], ⟨0 0 0 1 -2 -1]]
Mapping generators: ~2, ~3, ~5, ~7