↖ 6L 1s ↑ 7L 1s 8L 1s ↗
← 6L 2s 7L 2s 8L 2s →
↙ 6L 3s ↓ 7L 3s 8L 3s ↘
┌╥╥╥╥┬╥╥╥┬┐
│║║║║│║║║││
│││││││││││
└┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLLsLLLs
sLLLsLLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 5\9 to 4\7 (666.7 ¢ to 685.7 ¢)
Dark 3\7 to 4\9 (514.3 ¢ to 533.3 ¢)
TAMNAMS information
Name armotonic
Prefix arm-
Abbrev. arm
Related MOS scales
Parent 2L 5s
Sister 2L 7s
Daughters 9L 7s, 7L 9s
Neutralized 5L 4s
2-Flought 16L 2s, 7L 11s
Equal tunings
Equalized (L:s = 1:1) 5\9 (666.7 ¢)
Supersoft (L:s = 4:3) 19\34 (670.6 ¢)
Soft (L:s = 3:2) 14\25 (672.0 ¢)
Semisoft (L:s = 5:3) 23\41 (673.2 ¢)
Basic (L:s = 2:1) 9\16 (675.0 ¢)
Semihard (L:s = 5:2) 22\39 (676.9 ¢)
Hard (L:s = 3:1) 13\23 (678.3 ¢)
Superhard (L:s = 4:1) 17\30 (680.0 ¢)
Collapsed (L:s = 1:0) 4\7 (685.7 ¢)

This page is about of a MOSScale with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).

Name

The name superdiatonic has been established by Armodue theorists, and so TAMNAMS adopts it as well.

Temperaments

If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then mavila is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'.

These scales are strongly associated with the Armodue project/system applied to septimal mavila and Hornbostel temperaments.

Intervals

Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". 1-indexed terms such as "mos(k+1)th" are discouraged for non-diatonic mosses.

Scale tree

Optional types of 'JI Blown Fifth' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.

Generator Generator size (cents) Generator size (sats) Pentachord steps Comments
4\7 685.714… 914.286… 1 1|1 0
57\100 684 912 14 14|14 1
53\93 683.870… 911.827… 13 13|13 1
102\179 683.798… 911.731… 25 25|25 2 Approximately 0.03 cents away from 95/64
49\86 683.720… 911.527… 12 12|12 1
94\165 683.6̄3̄ 911.5̄1̄ 23 23|23 2
45\79 683.544… 911.392… 11 11|11 1
86\151 683.443… 911.258… 21 21|21 2
41\72 683.3̄ 911.1̄ 10 10|10 1
78\137 683.211… 910.948… 19 19|19 2
37\65 683.076… 910.769… 9 9|9 1
70\123 682.926… 910.569… 17 17|17 2
33\58 682.758… 910.344… 8 8|8 1 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones.
62\109 682.568… 910.091… 15 15|15 2
29\51 682.352… 909.803… 7 7|7 1
54\95 682.105… 909.473… 13 13|13 2
25\44 681.8̄1̄ 909.0̄9̄ 6 6|6 1
46\81 681.4̄8̄1̄ 908.641… 11 11|11 2
21\37 681.0̄8̄1̄ 908.1̄0̄8̄ 5 5|5 1
59\104 680.769… 907.692… 14 14|14 3
38\67 680.597… 907.462… 9 9|9 2
55\97 680.412… 907.216… 13 13|13 3
17\30 680 906.6̄ 4 4|4 1 L/s = 4
47\83 679.518… 906.024… 11 11|11 3
30\53 679.245… 905.660… 7 7|7 2
43\76 678.947… 905.263… 10 10|10 3
56\99 678.7̄8̄ 905.0̄5̄ 13 13|13 4
69\122 678.688… 904.918… 16 16|16 5
82\145 678.620… 904.827… 19 19|19 6
95\168 678.571… 904.761… 22 22|22 7
678.568… 904.758… π π|π 1 L/s = π
108\191 678.534… 904.712… 25 25|25 8
121\214 678.504… 904.672… 28 28|28 9 28;9 Superdiatonic 1/28-tone (a slight exceeded representation of the Pythagorean wolf Fifth)
134\237 678.481… 904.642… 31 31|31 10 HORNBOSTEL TEMPERAMENT (1/31-tone; Optimum high size of Hornbostel '6th')
13\23 678.260… 904.347… 3 3|3 1 HORNBOSTEL TEMPERAMENT (Armodue 1/3-tone)
126\223 678.026… 904.035… 29 29|29 10 HORNBOSTEL TEMPERAMENT

(Armodue 1/29-tone)

113\200 678 904 26 26|26 9 HORNBOSTEL (& OGOLEVETS) TEMPERAMENT (Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8')
100\177 677.966… 903.954… 23 23|23 8
87\154 677.922… 903.896… 20 20|20 7
74\131 677.862… 903.816… 17 17|17 6 Armodue-Hornbostel 1/17-tone (the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)
61\108 677.7̄ 903.7̄0̄3̄ 14 14|14 5 Armodue-Hornbostel 1/14-tone
109\193 677.720… 903.626… 25 25|25 9 Armodue-Hornbostel 1/25-tone
48\85 677.647… 903.529… 11 11|11 4 Armodue-Hornbostel 1/11-tone (Optimum accuracy of Phi interval, the note '7')
677.561… 903.415… e e|e 1 L/s = e
35\62 677.419… 903.225… 8 8|8 3 Armodue-Hornbostel 1/8-tone
92\163 677.300… 903.067… 21 21|21 8 21;8 Superdiatonic 1/21-tone
677.280… 903.040… φ+1 φ+1|φ+1 1 Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..)
57\101 677.227… 902.970" 13 13|13 5 13;5 Superdiatonic 1/13-tone
22\39 676.923… 902.564… 5 5|5 2 Armodue-Hornbostel 1/5-tone (Optimum low size of Hornbostel '6th')
75\133 676.691… 902.255… 17 17|17 7 17;7 Superdiatonic 1/17-tone (Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)
53\94 676.5̄9̄6̄ 902.127… 12 12|12 5
31\55 676.3̄6̄ 901.8̄1̄ 7 7|7 3 7;3 Superdiatonic 1/7-tone
40\71 676.056… 901.408… 9 9|9 4 9;4 Superdiatonic 1/9-tone
49\87 675.862… 901.149… 11 11|11 5 11;5 Superdiatonic 1/11-tone
58\103 675.728… 900.970… 13 13|13 6 13;6 Superdiatonic 1/13-tone
9\16 675 900 2 2|2 1 [BOUNDARY OF PROPRIETY: smaller generators are strictly proper]ARMODUE ESADECAFONIA (or Goldsmith Temperament)
59\105 674.285… 899.047… 13 13|13 7 Armodue-Mavila 1/13-tone
50\89 674.157… 898.876… 11 11|11 6 Armodue-Mavila 1/11-tone
41\73 673.9̄7̄3̄ 898.630… 9 9|9 5 Armodue-Mavila 1/9-tone (with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)
32\57 673.684… 898.245… 7 7|7 4 Armodue-Mavila 1/7-tone (the 'Commatic' version of Armodue, because its high accuracy of the 7/4 interval, the note '8')
673.577… 898.102… √3 √3|√3 1
55\98 673.469… 897.959… 12 12|12 7
78\139 673.381… 897.841… 17 17|17 10 Armodue-Mavila 1/17-tone
101\180 673.3̄ 897.7̄ 22 22|22 13
23\41 673.170… 897.560… 5 5|5 3 5;3 Golden Armodue-Mavila 1/5-tone
60\107 672.897… 897.196… 13 13|13 8 13;8 Golden Mavila 1/13-tone
672.850… 897.133… φ φ|φ 1 GOLDEN MAVILA (L/s = φ)
97\173 672.832… 897.109… 21 21|21 13 21;13 Golden Mavila 1/21-tone (Phi is the step 120\173)
37\66 672.7̄2̄ 896.9̄6̄ 8 8 8 5 8;5 Golden Mavila 1/8-tone
51\91 672.527… 896.703… 11 11|11 7 11;7 Superdiatonic 1/11-tone
672.522… 869.697… π π|π 2
116\207 672.464… 896.618… 25 25|25 16 25;16 Superdiatonic 1/25-tone
65\116 672.413… 896.551… 14 14|14 9 14;9 Superdiatonic 1/14-tone
79\141 672.340… 896.453… 17 17|17 11 17;11 Superdiatonic 1/17-tone
93\166 672.289… 896.385… 20 20|20 13
107\191 672.251… 896.335… 23 23|23 15
121\216 672.2̄ 896.2̄9̄6̄ 26 26|26 17 26;17 Superdiatonic 1/26-tone
135\241 672.199… 896.265… 29 29|29 19 29;19 Superdiatonic 1/29-tone
14\25 672 896 3 3|3 2 3;2 Golden Armodue-Mavila 1/3-tone
145\259 671.814… 895.752… 31 31|31 21 31;21 Superdiatonic 1/31-tone
131\234 671.794… 895.726… 28 28|28 19 28;19 Superdiatonic 1/28-tone
117\209 671.770… 895.693… 25 25|25 17
103\184 671.739… 895.652… 22 22|22 15
89\159 671.698… 895.579… 19 19|19 13
75\134 671.641… 895.522… 16 16|16 11
61\109 671.559… 895.412… 13 13|13 9
47\84 671.428… 895.238… 10 10|10 7
80\143 671.328… 895.104… 17 17|17 12
33\59 671.186… 894.915… 7 7|7 5
52\93 670.967… 894.623… 11 11|11 8
19\34 670.588… 894.117… 4 4|4 3
43\77 670.129… 893.506… 9 9|9 7
24\43 669.767… 893.023… 5 5|5 4
53\95 669.473… 892.631… 11 11|11 9
29\52 669.230… 892.308… 6 6|6 5
63\113 669.026… 892.035… 13 13|13 11
34\61 668.852… 891.803… 7 7|7 6
73\131 668.702… 891.603… 15 15|15 13
39\70 668.571… 891.428… 8 8|8 7
83\149 668.456… 891.275… 17 17|17 15
44\79 668.354… 891.139… 9 9|9 8
93\167 668.236… 891.017… 19 19|19 17
49\88 668.1̄8̄ 890.9̄0̄ 10 10|10 9
103\185 668.1̄0̄8̄ 890.8̄1̄0̄ 21 21|21 9
54\97 668.041… 890.721… 11 11|11 10
113\203 667.980… 890.640… 23 23|23 21
59\106 667.924… 890.566… 12 12|12 11
123\221 667.873… 890.497… 25 25|25 23
64\115 667.826… 890.434… 13 13|13 12
69\124 667.741… 890.325… 14 14|14 13
74\133 667.669… 890.225… 15 15|15 14
79\142 667.605… 890.140… 16 16|16 15
84\151 667.549… 890.662… 17 17|17 16
89\160 667.5 890 18 18|18 17
94\169 667.455… 889.940… 19 19|19 18
5\9 666.6̄ 888.8̄ 1 1 1 1