← 356edo 357edo 358edo →
Prime factorization 3 × 7 × 17
Step size 3.36134 ¢ 
Fifth 209\357 (702.521 ¢)
Semitones (A1:m2) 35:26 (117.6 ¢ : 87.39 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

While not highly accurate for its size, 357et is the point where a few important temperaments meet. The equal temperament tempers out 1600000/1594323 (amity comma), and [61 4 -29 (squarschimidt comma) in the 5-limit; 10976/10935 (hemimage comma), 235298/234375 (triwellisma), 250047/250000 (landscape comma), 2100875/2097152 (rainy comma) in the 7-limit; 3025/3024, 5632/5625, 12005/11979 in the 11-limit; 676/675, 1001/1000, 2080/2079, 4096/4095, 4225/4224, 6656/6655 and 10648/10647 in the 13-limit.

It supports 5-limit amity and 7-limit weak extensions calamity and chromat. It provides the optimal patent val for 11- and 13-limit hemichromat, the 159 & 198 temperament. It also supports avicenna, but 270edo is better suited for this purpose.

Prime harmonics

Approximation of prime harmonics in 357edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.57 +0.24 -0.76 -0.06 -0.19 -0.75 +1.65 +0.30 -1.01 +1.18
Relative (%) +0.0 +16.8 +7.2 -22.6 -1.7 -5.7 -22.4 +49.0 +8.8 -29.9 +35.2
Steps
(reduced)
357
(0)
566
(209)
829
(115)
1002
(288)
1235
(164)
1321
(250)
1459
(31)
1517
(89)
1615
(187)
1734
(306)
1769
(341)

Subsets and supersets

Since 357 factors into 3 × 7 × 17, 357edo has subset edos 3, 7, 17, 21, 51, and 119.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [566 -357 | [357 566]] | −0.1786 | 0.1785 | 5.31 |- | 2.3.5 | 1600000/1594323, [61 4 -29 | [357 566 829]] | −0.1536 | 0.1500 | 4.46 |- | 2.3.5.7 | 10976/10935, 235298/234375, 2100875/2097152 | [357 566 829 1002]] | −0.0477 | 0.2248 | 6.69 |- | 2.3.5.7.11 | 3025/3024, 5632/5625, 10976/10935, 102487/102400 | [357 566 829 1002 1235]] | −0.0348 | 0.2027 | 6.03 |- | 2.3.5.7.11.13 | 676/675, 1001/1000, 3025/3024, 4096/4095, 10976/10935 | [357 566 829 1002 1235 1321]] | −0.0204 | 0.1879 | 5.59 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 101\357 | 339.50 | 243/200 | Amity (5-limit) |- | 1 | 118\357 | 396.64 | 44/35 | Squarschmidt |- | 1 | 163\357 | 547.90 | 48/35 | Calamity |- | 3 | 9\357 | 30.25 | 55/54 | Hemichromat |- | 3 | 18\357 | 60.50 | 28/27 | Chromat (7-limit) |- | 3 | 41\357 | 137.82 | 13/12 | Avicenna |- | 3 | 48\357 | 161.34 | 192/175 | Pnict Template:Rank-2 end Template:Orf