1547edo
← 1546edo | 1547edo | 1548edo → |
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.049 | -0.018 | +0.017 | +0.201 | +0.326 | -0.237 | +0.354 | +0.039 | -0.230 | -0.110 |
Relative (%) | +0.0 | +6.3 | -2.3 | +2.2 | +25.9 | +42.0 | -30.5 | +45.6 | +5.0 | -29.7 | -14.2 | |
Steps (reduced) |
1547 (0) |
2452 (905) |
3592 (498) |
4343 (1249) |
5352 (711) |
5725 (1084) |
6323 (135) |
6572 (384) |
6998 (810) |
7515 (1327) |
7664 (1476) |
1547edo is excellent in the 7-limit.
In the 5-limit, it supports gross.
In the 7-limit, it supports semidimi and brahmagupta.
In the 17-limit, it supports 91th-octave temperament protactinium.
1547's divisors are 1, 7, 13, 17, 91, 119, 221.
Regular temperament properties
Rank-2 temperaments by generator
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 118\1547 | 91.532 | [9 -32 18> | Gross |
1 | 579\1547 | 449.127 | 35/27 | Semidimi |
7 | 670\1547 (7\1547) |
519.715 (5.429) |
27/20 (325/324) |
Brahmagupta |
91 | 905\1547 (4\1547) |
702.003 (3.103) |
3/2 (?) |
Protactinium |