253edo

From Xenharmonic Wiki
Revision as of 16:19, 4 October 2022 by Plumtree (talk | contribs) (Infobox ET now computes most parameters automatically)
Jump to navigation Jump to search
← 252edo 253edo 254edo →
Prime factorization 11 × 23
Step size 4.74308 ¢ 
Fifth 148\253 (701.976 ¢)
(semiconvergent)
Semitones (A1:m2) 24:19 (113.8 ¢ : 90.12 ¢)
Consistency limit 17
Distinct consistency limit 17

Template:EDO intro

Theory

253edo is consistent to the 17-odd-limit, approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides the optimal patent val for the tertiaschis temperament, and a good tuning for the sesquiquartififths temperament in the higher limits.

253 = 11 × 23, and has subset edos 11edo and 23edo.

Prime harmonics

Approximation of prime harmonics in 253edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.02 -2.12 -1.24 -1.12 -1.00 -0.61 +1.30 -2.19 -0.33 -1.95
Relative (%) +0.0 +0.4 -44.8 -26.1 -23.6 -21.1 -12.8 +27.4 -46.1 -6.9 -41.2
Steps
(reduced)
253
(0)
401
(148)
587
(81)
710
(204)
875
(116)
936
(177)
1034
(22)
1075
(63)
1144
(132)
1229
(217)
1253
(241)

Regular temperament properties

Subgroup Comma List Mapping Optimal 8ve
Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [401 -253 [253 401]] -0.007 0.007 0.14
2.3.5 32805/32768, [-4 -37 27 [253 401 587]] +0.300 0.435 9.16
2.3.5.7 2401/2400, 32805/32768, 390625/387072 [253 401 587 710]] +0.335 0.381 8.03
2.3.5.7.11 385/384, 1375/1372, 4000/3993, 19712/19683 [253 401 587 710 875]] +0.333 0.341 7.19
2.3.5.7.11.13 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197 [253 401 587 710 875 936]] +0.323 0.312 6.58
2.3.5.7.11.13.17 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197 [253 401 587 710 875 936 1034]] +0.298 0.295 6.22

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per Octave
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 35\253 166.01 11/10 Tertiaschis
1 37\253 175.49 448/405 Sesquiquartififths
1 105\253 498.02 4/3 Helmholtz
1 123\253 583.40 7/5 Cotritone

Scales