55edo

From Xenharmonic Wiki
Revision as of 04:12, 2 July 2022 by Fredg999 (talk | contribs) (Used 15-odd-limit template, cleanup)
Jump to navigation Jump to search

55edo divides the octave into 55 parts of 21.818 ¢. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.

Theory

Approximation of odd harmonics in 55edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -3.77 +6.41 -8.83 -7.55 -5.86 +10.38 +2.64 +4.14 +7.94 +9.22 +4.45
Relative (%) -17.3 +29.4 -40.5 -34.6 -26.9 +47.6 +12.1 +19.0 +36.4 +42.3 +20.4
Steps
(reduced)
87
(32)
128
(18)
154
(44)
174
(9)
190
(25)
204
(39)
215
(50)
225
(5)
234
(14)
242
(22)
249
(29)

5-limit commas: 81/80, [31 1 -14, [27 5 -15

7-limit commas: 31104/30625, 6144/6125, 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, 16807/16384, 84035/82944

11-limit commas: 59049/58564, 74088/73205, 46656/46585, 21609/21296, 12005/11979, 19683/19360, 243/242, 3087/3025, 5488/5445, 19683/19250, 1944/1925, 45927/45056, 2835/2816, 35721/34375, 7056/6875, 12544/12375, 7203/7040, 2401/2376, 24057/24010, 72171/70000, 891/875, 176/175, 2079/2048, 385/384, 3234/3125, 17248/16875, 26411/25600, 26411/2592, 26411/262404, 88209/87808, 30976/30625, 3267/3200, 121/120, 81312/78125, 41503/40000, 41503/40500, 35937/35000, 2662/2625, 42592/42525, 83853/81920, 9317/9216, 65219/62500, 43923/43904, 14641/14400, 14641/14580

13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, 144/143, 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, 105/104, 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, 66/65, 352/351, 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, 31213/31104, 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125

Intervals

# Cents Approximate ratios
0 0.000 1/1
1 21.818 128/125, 64/63, 65/64, 78/77, 91/90, 99/98, 81/80
2 43.636 36/35
3 65.4545 28/27, 25/24
4 87.273 25/24, 21/20
5 109.091 16/15
6 130.909 14/13, 13/12
7 152.727 13/12, 12/11
8 174.5455 11/10, 10/9
9 196.364 9/8, 10/9
10 218.182 17/15
11 240 8/7, 15/13
12 261.818 7/6
13 283.636 13/11
14 305.4545 6/5-
15 327.273 6/5+
16 349.091 11/9, 27/22
17 370.909 16/13
18 392.727 5/4
19 414.5455 14/11
20 436.364 9/7
21 458.182 13/10
22 480 21/16
23 501.818 4/3, 27/20
24 523.636 27/20
25 545.4545 11/8
26 567.273 18/13, 25/18
27 589.091 7/5
28 610.909 10/7
29 632.727 13/9, 36/25
30 654.5455 16/11
31 676.364 40/27
32 698.182 3/2, 40/27
33 720 32/21
34 741.818 20/13
35 763.636 14/9
36 785.4545 11/7
37 807.273 8/5
38 829.091 13/8
39 850.909 18/11, 44/27
40 872.727 5/3-
41 894.5455 5/3+
42 916.364 22/13
43 938.182 12/7
44 960 7/4, 26/15
45 981.818 30/17
46 1003.636 16/9, 9/5
47 1025.4545 9/5, 20/11
48 1047.273 11/6, 24/13
49 1069.091 24/13, 13/7
50 1090.909 15/8
51 1112.727 40/21, 48/25
52 1134.5455 56/27, 48/25
53 1156.364 35/18
54 1178.182 125/64, 63/32, 128/65, 77/39, 180/91, 196/99, 160/81
55 1200 2/1

Selected just intervals by error

The following table shows how 15-odd-limit just intervals are represented in 55edo (ordered by absolute error). The following tables show how 15-odd-limit intervals are represented in 55edo. Prime harmonics are in bold; inconsistent intervals are in italics.

15-odd-limit intervals in 55edo (direct approximation, even if inconsistent)
Interval and complement Error (abs, ¢) Error (rel, %)
1/1, 2/1 0.000 0.0
9/7, 14/9 1.280 5.9
11/9, 18/11 1.683 7.7
11/6, 12/11 2.090 9.6
13/7, 14/13 2.611 12.0
15/8, 16/15 2.640 12.1
11/7, 14/11 2.963 13.6
3/2, 4/3 3.773 17.3
13/9, 18/13 3.890 17.8
13/10, 20/13 3.968 18.2
7/6, 12/7 5.053 23.2
13/11, 22/13 5.573 25.5
11/8, 16/11 5.863 26.9
5/4, 8/5 6.414 29.4
7/5, 10/7 6.579 30.2
9/8, 16/9 7.546 34.6
13/12, 24/13 7.664 35.1
15/13, 26/15 7.741 35.5
9/5, 10/9 7.858 36.0
15/11, 22/15 8.504 39.0
7/4, 8/7 8.826 40.5
11/10, 20/11 9.541 43.7
5/3, 6/5 10.187 46.7
15/14, 28/15 10.352 47.4
13/8, 16/13 10.381 47.6
15-odd-limit intervals in 55edo (patent val mapping)
Interval and complement Error (abs, ¢) Error (rel, %)
1/1, 2/1 0.000 0.0
9/7, 14/9 1.280 5.9
11/9, 18/11 1.683 7.7
11/6, 12/11 2.090 9.6
15/8, 16/15 2.640 12.1
11/7, 14/11 2.963 13.6
3/2, 4/3 3.773 17.3
13/10, 20/13 3.968 18.2
7/6, 12/7 5.053 23.2
11/8, 16/11 5.863 26.9
5/4, 8/5 6.414 29.4
9/8, 16/9 7.546 34.6
15/13, 26/15 7.741 35.5
15/11, 22/15 8.504 39.0
7/4, 8/7 8.826 40.5
5/3, 6/5 10.187 46.7
13/8, 16/13 10.381 47.6
15/14, 28/15 11.466 52.6
11/10, 20/11 12.277 56.3
9/5, 10/9 13.960 64.0
13/12, 24/13 14.155 64.9
7/5, 10/7 15.239 69.8
13/11, 22/13 16.245 74.5
13/9, 18/13 17.928 82.2
13/7, 14/13 19.207 88.0

Music

External links