157edo

From Xenharmonic Wiki
Revision as of 08:35, 16 July 2021 by FloraC (talk | contribs) (+RTT table)
Jump to navigation Jump to search

The 157 equal divisions of the octave (157edo), or the 157(-tone) equal temperament (157tet, 157et) when viewed from a regular temperament perspective, is the equal division of the octave into 157 parts of 7.6433 cents each.

Theory

157et tempers out 78732/78125 (sensipent comma) and 137438953472/134521003125 in the 5-limit; 2401/2400, 5120/5103, and 110592/109375 in the 7-limit (supporting the hemififths and the catafourth). Using the patent val, it tempers out 176/175, 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; 351/350, 352/351, 847/845, 1573/1568, and 2197/2187 in the 13-limit.

157edo is the 37th prime EDO.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [249 -157 [157 249]] -0.388 0.388 5.08
2.3.5 78732/78125, 37 -16 -5] [157 249 365]] -0.760 0.614 8.04
2.3.5.7 2401/2400, 5120/5103, 78732/78125 [157 249 365 441]] -0.737 0.533 6.98
2.3.5.7.11 176/175, 1331/1323, 2401/2400, 5120/5103 [157 249 365 441 543]] -0.532 0.629 8.24
2.3.5.7.11.13 176/175, 351/350, 847/845, 1331/1323, 2197/2187 [157 249 365 441 543 581]] -0.454 0.600 7.86
2.3.5.7.11.13.17 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 [157 249 365 441 543 581 642]] -0.461 0.556 7.28
2.3.5.7.11.13.17.19 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 [157 249 365 441 543 581 642 667]] -0.420 0.531 6.95

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperament
1 46\157 351.59 49/40 Hemififths
1 56\157 428.03 2800/2187 Osiris
1 58\157 443.31 49/40 Sensipent
1 64\157 489.17 250/189 Catafourth