37edf

From Xenharmonic Wiki
Revision as of 13:44, 10 February 2019 by Xenllium (talk | contribs)
Jump to navigation Jump to search

37EDF is the equal division of the just perfect fifth into 37 parts of 18.9718 cents each, corresponding to 63.2519 edo (similar to every fourth step of 253edo). It is related to the regular temperament which tempers out 385/384, 12005/11979, and 820125/819896 in the 11-limit, which is supported by 63edo, 190edo, and 253edo among others.

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 18.9718
2 37.9435 45/44
3 56.9153
4 75.8870
5 94.8588
6 113.8305 16/15
7 132.8023
8 151.7741 12/11
9 170.7458
10 189.7176
11 208.6893
12 227.6611
13 246.6328 15/13
14 265.6046 7/6
15 284.5764 33/28
16 303.5481 81/68
17 322.5199
18 341.4916
19 360.4634
20 379.4351
21 398.4069 34/27
22 417.3786 14/11
23 436.3504 9/7
24 455.3222 13/10
25 474.2939
26 493.2657
27 512.2374
28 531.2092
29 550.1809 11/8
30 569.1527
31 588.1245 45/32
32 607.0962
33 626.0680
34 645.0397
35 664.0115 22/15
36 682.9832
37 701.9550 exact 3/2 just perfect fifth

Related regular temperaments

7-limit 63&190

Commas: 2460375/2458624, 514714375/509607936

POTE generator: ~1728/1715 = 18.957

Map: [<1 1 3 2|, <0 37 -43 51|]

EDOs: 63, 190, 253

11-limit 63&190

Commas: 385/384, 12005/11979, 820125/819896

POTE generator: ~99/98 = 18.957

Map: [<1 1 3 2 3|, <0 37 -43 51 29|]

EDOs: 63, 190, 253

13-limit 63&190

Commas: 385/384, 1575/1573, 2200/2197, 4459/4455

POTE generator: ~99/98 = 18.959

Map: [<1 1 3 2 3 4|, <0 37 -43 51 29 -19|]

EDOs: 63, 190, 253