277edo

From Xenharmonic Wiki
Revision as of 02:06, 16 November 2024 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search
← 276edo 277edo 278edo →
Prime factorization 277 (prime)
Step size 4.33213 ¢ 
Fifth 162\277 (701.805 ¢)
Semitones (A1:m2) 26:21 (112.6 ¢ : 90.97 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

277edo is a good 5-limit tuning; however, it is inconsistent in the 7-odd-limit. The equal temperament tempers out 32805/32768 (schisma) and [-11 -37 30 in the 5-limit.

The patent val 277 439 643 778] tempers out 4375/4374, 65625/65536, and 829440/823543 in the 7-limit; 540/539, 6250/6237, 15488/15435, and 35937/35840 in the 11-limit; 625/624, 729/728, 1573/1568, 2080/2079, and 2200/2197 in the 13-limit. It supports pontiac.

The 277d val 277 439 643 777] tempers out 1029/1024, 10976/10935, and 48828125/48771072 in the 7-limit; 385/384, 441/440, 19712/19683, and 234375/234256 in the 11-limit; 625/624, 847/845, 1001/1000, and 1575/1573 in the 13-limit. It supports guiron and widefourth.

Prime harmonics

Approximation of prime harmonics in 277edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.15 -0.75 +1.57 -1.14 -0.09 -0.98 +1.40 -0.12 +1.47 -1.35
Relative (%) +0.0 -3.5 -17.4 +36.3 -26.3 -2.2 -22.7 +32.4 -2.7 +33.9 -31.2
Steps
(reduced)
277
(0)
439
(162)
643
(89)
778
(224)
958
(127)
1025
(194)
1132
(24)
1177
(69)
1253
(145)
1346
(238)
1372
(264)

Subsets and supersets

277edo is the 59th prime edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-439 277 | [277 439]] | +0.0473 | 0.0473 | 1.09 |- | 2.3.5 | 32805/32768, [-11 -37 30 | [277 439 643]] | +0.1398 | 0.1364 | 3.15 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 115\277 | 498.19 | 4/3 | Helmholtz Template:Rank-2 end Template:Orf