94edo

From Xenharmonic Wiki
Revision as of 08:20, 18 April 2023 by Lhearne (talk | contribs) (Intervals: added a table with interval names, work in progress)
Jump to navigation Jump to search
← 93edo 94edo 95edo →
Prime factorization 2 × 47
Step size 12.766 ¢ 
Fifth 55\94 (702.128 ¢)
(semiconvergent)
Semitones (A1:m2) 9:7 (114.9 ¢ : 89.36 ¢)
Consistency limit 23
Distinct consistency limit 13

Template:EDO intro

Theory

94edo is a remarkable all-around utility tuning system, good from low prime limit to very high prime limit situations. It is the first edo to be consistent through the 23-odd-limit, and no other edo is so consistent until 282 and 311 make their appearance.

The list of 23-limit commas it tempers out is huge, but it is worth noting that it tempers out 32805/32768 and is thus a schismatic system, that it tempers out 225/224 and 385/384 and so is a marvel system, and that it also tempers out 3125/3087, 4000/3969, 5120/5103 and 540/539. It provides the optimal patent val for the rank-5 temperament tempering out 275/273, and for a number of other temperaments, such as isis.

94edo is an excellent edo for Carlos Beta scale, since the difference between 5 steps of 94edo and 1 step of Carlos Beta is only -0.00314534 cents.

Prime harmonics

Approximation of prime harmonics in 94edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.17 -3.33 +1.39 -2.38 +2.03 -2.83 -3.90 -2.74 +4.47 +3.90
Relative (%) +0.0 +1.4 -26.1 +10.9 -18.7 +15.9 -22.2 -30.5 -21.5 +35.0 +30.6
Steps
(reduced)
94
(0)
149
(55)
218
(30)
264
(76)
325
(43)
348
(66)
384
(8)
399
(23)
425
(49)
457
(81)
466
(90)

Intervals

Assuming 23-limit patent val <94 149 218 264 325 348 384 399 425|, here is a table of intervals as approximated by 94edo steps, and their corresponding 13-limit well-ordered extended diatonic interval names. Important 13-limit intervals approximated that are not associated with the extended diatonic interval names are added in brackets. Multiple alterations by 'k' (representing 81/80), down from augmented and major, or up from diminished and minor intervals are also added in brackets, along with their associated (5-limit) intervals.

94edo well-ordered extended diatonic (WED) interval names
Step Cents 13-limit Short-form WED Diatonic Long-form 23-limit
1 12.766 896/891, 243/242, (3125/3072, 245/243, 99/98) L1, R1 85/84
2 25.532 81/80, 64/63, (50/49) K1, S1
3 38.298 45/44, 40/39, (250/243, 49/48) O1, H1 46/45
4 51.064 33/32, (128/125, 36/35) U1, T1
5 63.830 28/27, 729/704, 27/26, (25/24) sm2, uA1, tA1, (kkA1) dd3
6 76.596 22/21, (648/625) lm2, oA1
7 89.362 256/243, 135/128, (21/20) m2, kA1 m2 19/18
8 102.128 128/121, (35/33) Rm2, rA1 17/16, 18/17
9 114.894 16/15, (15/14) Km2, A1 A1
10 127.660 320/297, 189/176, (14/13) Om2, LA1
11 140.426 88/81, 13/12, 243/224, (27/25) n2, Tm2, SA1, (kkm2)
12 153.191 12/11, (35/32) N2, HA1 ddd4
13 165.957 11/10 oM2
14 178.723 10/9 kM2 d3
15 191.489 121/108, (49/44, 39/35) rM2 19/17
16 204.255 9/8 M2 M2
17 217.021 112/99, (25/22) LM2 17/15
18 229.787 8/7 SM2 AA1
19 242.553 15/13 HM2 23/20
20 255.319 52/45 hm3 22/19
21 268.085 7/6, (75/64) sm3, (kkA2) dd4
22 280.851 33/28 lm3 20/17
23 293.617 32/27, (25/21) m3 m3 13/11
24 306.383 144/121, (81/70) Rm3
25 319.149 6/5 Km3 A2
26 331.915 40/33 Om3 17/14, 23/19
27 344.681 11/9, 39/32, (243/200, 60/49) n3, Tm3 AAA1
28 357.447 27/22, 16/13, (100/81,49/40) N3, tM3 ddd5
29 370.213 99/80, (26/21) oM3 21/17
30 382.979 5/4 kM3 d4
31 395.745 121/96, (34/27) rM3
32 408.511 81/64, (33/26) M3 M3 19/15
33 421.277 14/11 LM3 23/18
34 434.043 9/7, (32/25) SM3, (KKd4) AA2
35 446.809 135/104, (35/27) HM3 ddd6 22/17
36 459.574 13/10 h4
37 472.340 21/16 s4 dd5
38 485.106 297/224 l4
39 497.872 4/3 P4 P4
40 510.638 162/121, (35/36) R4
41 523.404 27/20 K4 A3 19/14, 23/17
42 536.170 15/11 O4
43 548.936 11/8 U4, T4 AAA2
44 561.702 243/176, 18/13, (25/18) uA4, tA4, (kkA4) dd6
45 574.468 88/63 ld5, oA4
46 587.234 45/32, (7/5) kA4 d5
47 600.000 363/256, 512/363, (99/70) rA4, Rd5 17/12, 24/17
48 612.766 A4
49 625.532
50 638.298
51 651.064 ddd7
52 663.830
53 676.596 d6
54 689.362
55 702.128 P5
56 714.894
57 727.660 AA4
58 740.426
59 753.191
60 765.957 dd7
61 778.723
62 791.489 m6
63 804.255
64 817.021 A5
65 829.787
66 842.553 AAA4
67 855.319 ddd8
68 868.085
69 880.851 d7
70 893.617
71 906.383 M6
72 919.149
73 931.915 AA5
74 944.681
75 957.447
76 970.213 dd8
77 982.979
78 995.745 m7
79 1008.511
80 1021.277 A6
81 1034.043
82 1046.809 AAA5
83 1059.574
84 1072.340
85 1085.106 d8
86 1097.872
87 1110.638 M7
88 1123.404
89 1136.170 AA6
90 1148.936
91 1161.702
92 1174.468
93 1187.234
94 1200.000 P1

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [149 -94 [94 149]] -0.054 0.054 0.43
2.3.5 32805/32768, 9765625/9565938 [94 149 218]] +0.442 0.704 5.52
2.3.5.7 225/224, 3125/3087, 118098/117649 [94 149 218 264]] +0.208 0.732 5.74
2.3.5.7.11 225/224, 385/384, 1331/1323, 2200/2187 [94 149 218 264 325]] +0.304 0.683 5.35
2.3.5.7.11.13 225/224, 275/273, 325/324, 385/384, 1331/1323 [94 149 218 264 325 348]] +0.162 0.699 5.48
2.3.5.7.11.13.17 170/169, 225/224, 275/273, 289/288, 325/324, 385/384 [94 149 218 264 325 348 384]] +0.238 0.674 5.28
2.3.5.7.11.13.17.19 170/169, 190/189, 225/224, 275/273, 289/288, 325/324, 385/384 [94 149 218 264 325 348 384 399]] +0.323 0.669 5.24
2.3.5.7.11.13.17.19.23 170/169, 190/189, 209/208, 225/224, 275/273, 289/288, 300/299, 323/322 [94 149 218 264 325 348 384 399 425]] +0.354 0.637 4.99

94et is lower in relative error than any previous equal temperaments in the 23-limit, and the equal temperament that does better in this subgroup is 193.

Rank-2 temperaments

Periods
per 8ve
Generator Cents Associated
Ratio
Temperament
1 3\94 38.30 49/48 Slender
1 5\94 63.83 25/24 Sycamore / betic
1 11\94 140.43 243/224 Tsaharuk / quanic
1 13\94 165.96 11/10 Tertiaschis
1 19\94 242.55 147/128 Septiquarter
1 39\94 497.87 4/3 Helmholtz / garibaldi / cassandra
2 2\94 25.53 64/63 Ketchup
2 11\94 140.43 27/25 Fifive
2 30\94 382.98 5/4 Wizard / gizzard
2 34\94 434.04 9/7 Pogo / supers
2 43\94 548.94 11/8 Kleischismic

Below are some 23-limit temperaments supported by 94et. It might be noted that 94, a very good tuning for garibaldi temperament, shows us how to extend it to the 23-limit.

  • 46&94 ⟨⟨ 8 30 -18 -4 -28 8 -24 2 … ]]
  • 68&94 ⟨⟨ 20 28 2 -10 24 20 34 52 … ]]
  • 53&94 ⟨⟨ 1 -8 -14 23 20 -46 -3 -35 … ]] (one garibaldi)
  • 41&94 ⟨⟨ 1 -8 -14 23 20 48 -3 -35 … ]] (another garibaldi, only differing in the mappings of 17 and 23)
  • 135&94 ⟨⟨ 1 -8 -14 23 20 48 -3 59 … ]] (another garibaldi)
  • 130&94 ⟨⟨ 6 -48 10 -50 26 6 -18 -22 … ]] (a pogo extension)
  • 58&94 ⟨⟨ 6 46 10 44 26 6 -18 -22 … ]] (a supers extension)
  • 50&94 ⟨⟨ 24 -4 40 -12 10 24 22 6 … ]]
  • 72&94 ⟨⟨ 12 -2 20 -6 52 12 -36 -44 … ]] (a gizzard extension)
  • 80&94 ⟨⟨ 18 44 30 38 -16 18 40 28 … ]]
  • 94 solo ⟨⟨ 12 -2 20 -6 -42 12 -36 -44 … ]] (a rank one temperament!)

Temperaments to which 94et can be detempered:

  • Satin (94&311) ⟨⟨ 3 70 -42 69 -34 50 85 83 … ]]
  • 94&422 ⟨⟨ 8 124 -18 90 -28 102 164 96 … ]]

Scales

Since 94edo has a step of 12.766 cents, it also allows one to use its mos scales as circulating temperaments and is the first edo to allows one to use a nohajira, pajara or miracle mos scale a as circulating temperament[clarification needed].

Circulating temperaments in 94edo
Tones Pattern L:s
5 4L 1s 19:18
6 4L 2s 16:15
7 3L 4s 14:13
8 6L 2s 12:11
9 4L 5s 11:10
10 4L 6s 10:9
11 6L 5s 9:8
12 10L 2s 8:7
13 3L 10s
14 10L 4s 7:6
15 4L 11s
16 14L 2s 6:5
17 9L 8s
18 4L 14s
19 18L 1s 5:4
20 14L 6s
21 10L 11s
22 6L 16s
23 2L 21s
24 22L 2s 4:3
25 19L 6s
26 16L 10s
27 13L 14s
28 10L 18s
29 7L 22s
30 4L 22s
31 1L 30s
32 30L 2s 3:2
33 28L 5s
34 26L 8s
35 24L 11s
36 22L 14s
37 20L 17s
38 18L 20s
39 16L 23s
40 14L 26s
41 13L 28s
42 10L 32s
43 8L 35s
44 6L 38s
45 4L 41s
46 2L 44s
47 47edo equal
48 46L 2s 2:1
49 45L 4s
50 44L 6s
51 43L 8s
52 42L 10s
53 41L 12s
54 40L 14s
55 39L 16s
56 38L 18s
57 37L 20s
58 36L 22s
59 35L 24s
60 34L 26s
61 33L 28s
62 32L 30s
63 31L 32s
64 30L 34s
65 29L 36s
66 28L 38s
67 27L 40s
68 26L 42s
69 25L 44s
70 24L 46s
71 23L 48s
72 22L 50s
73 21L 52s
74 20L 54s
75 19L 56s