4L 5s (3/1-equivalent)

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 3L 4s⟨3/1⟩ ↑ 4L 4s⟨3/1⟩ 5L 4s⟨3/1⟩ ↗
← 3L 5s⟨3/1⟩ 4L 5s (3/1-equivalent) 5L 5s⟨3/1⟩ →
↙ 3L 6s⟨3/1⟩ ↓ 4L 6s⟨3/1⟩ 5L 6s⟨3/1⟩ ↘
┌╥┬╥┬╥┬╥┬┬┐
│║│║│║│║│││
│││││││││││
└┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LsLsLsLss
ssLsLsLsL
Equave 3/1 (1902.0 ¢)
Period 3/1 (1902.0 ¢)
Generator size(edt)
Bright 2\9 to 1\4 (422.7 ¢ to 475.5 ¢)
Dark 3\4 to 7\9 (1426.5 ¢ to 1479.3 ¢)
Related MOS scales
Parent 4L 1s⟨3/1⟩
Sister 5L 4s⟨3/1⟩
Daughters 9L 4s⟨3/1⟩, 4L 9s⟨3/1⟩
Neutralized 8L 1s⟨3/1⟩
2-Flought 13L 5s⟨3/1⟩, 4L 14s⟨3/1⟩
Equal tunings(edt)
Equalized (L:s = 1:1) 2\9 (422.7 ¢)
Supersoft (L:s = 4:3) 7\31 (429.5 ¢)
Soft (L:s = 3:2) 5\22 (432.3 ¢)
Semisoft (L:s = 5:3) 8\35 (434.7 ¢)
Basic (L:s = 2:1) 3\13 (438.9 ¢)
Semihard (L:s = 5:2) 7\30 (443.8 ¢)
Hard (L:s = 3:1) 4\17 (447.5 ¢)
Superhard (L:s = 4:1) 5\21 (452.8 ¢)
Collapsed (L:s = 1:0) 1\4 (475.5 ¢)

Suggested for use as a "diatonic scale" when playing Bohlen-Pierce is the 9-note Lambda scale, which is the 4L5s MOS. This can be thought of as an MOS generated by a 3.5.7 rank-2 temperament called BPS (Bohlen-Pierce-Stearns) that eliminates only the comma 245/243, so that 9/7 * 9/7 = 5/3.

This is a very good temperament on the 3.5.7 subgroup, and additionally is supported by many EDT's (and even EDOs!) besides 13-EDT.

Some low-numbered EDOs that support Lambda are 19, 22, 27, 41, and 46, all of which make it possible to play BP music to some reasonable extent. These EDOs contain not only the Lambda BP diatonic scale, but also the 13-note "Lambda chromatic" MOS scale, or Lambda[13], which can be thought of as a "detempered" version of the 13-EDT Bohlen Pierce scale. This scale may be a suitable melodic substitute for the BP chromatic scale, and is basically the same as how 19-EDO and 31-EDO do not contain 12-EDO as a subset, but they do contain the meantone[12] chromatic scale.

When playing this temperament in some EDO, it may be desired to stretch/compress the tuning so that the tritave is pure, rather than the octave being pure - or in general, to minimize the error on the 3.5.7 subgroup while ignoring the error on 2/1.

One can "add" the octave to Lambda temperament by simply creating a new mapping for 2/1. A simple way to do so is to map the 2/1 to +7 of the ~9/7 generators, minus a single tritave. This is Sensi temperament, in essence treating it as a "3.5.7.2 extension" of the original 3.5.7 Lambda temperament.

List of EDT's supporting Lambda Temperament

Below is a list of the equal-temperaments which contain a 4L+5s scale using generators between 422.7 cents and 475.5 cents.

L=1 s=0 4 edt

L=1 s=1 9 edt (5flat40 7sharp18)

L=2 s=1 13 (5flat7 7flat3)

L=3 s=1 17 (5sharp10 7flat12)

L=3 s=2 22 (~14edo)

L=4 s=1 21

L=4 s=3 31

L=5 s=1 25

L=5 s=2 30 (~19edo) (5sharp3 7flat8)

L=5 s=3 35 (~22edo) (5flat14 7sharp0)

L=5 s=4 40

L=6 s=1 29

L=6 s=5 49 (~31EDO) (5sharp8 7sharp8) (Schism*)

L=7 s=1 33

L=7 s=2 38 (~24edo)

L=7 s=3 43 (~27edo) (5sharp0 7flat6)

L=7 s=4 48 (5flat13 7flat0)

L=7 s=5 53

L=7 s=6 58 5sharp1 7sharp10 (Schism*)

  • Schism, by which I mean, the most accurate value for 5/3 and-or 7/3 is found outside the 4L+5s MOS.

[Also, the way I see it, as 4edt and 9edt are comparable to 5edo and 7edo, then the "counterparts" of Blackwood and Whitewood would be found in multiples therein and would be octatonic and octadecatonic, e.g. 12edt and 27edt.]

Generator cents

hekts

L s notes
1/4 475.488…

325

0
8/33 461.080…

315.15

403.445…

275.75

57.635…

39.39

7/29 459.092…

313.793…

393.507…

268.965…

65.584…

44.827…

13/54 457.878…

312.962

387.435…

264.814

70.442…

48.148

6/25 456.469…

312

380.391…

260

76.078…

52

17/71 455.397…

311.267…

375.033…

256.338…

80.364…

54.929…

11/46 454.815…

310.869…

372.121…

254.347…

82.693…

56.521…

16/67 454.198…

310.447…

369.036…

252.238…

85.162…

58.208…

5/21 452.846…

309.523…

362.277…

247.619…

90.569…

61.904…

19/80 451.714…

308.75

356.616…

243.75

95.097…

65

14/59 451.311…

308.474…

354.601…

242.372…

96.709…

66.101…

23/97 450.979…

308.247…

352.940…

241.234…

98.038…

67.010…

9/38 450.463…

307.894…

350.360…

239.473…

100.102…

68.421…

22/93 449.924…

307.526…

347.669…

237.634…

102.255…

69.892…

13/55 449.553…

307.27

345.810…

236.36

103.743…

70.90

17/72 449.072…

306.94

343.408…

234.72

105.664…

72.2

448.420…

306.498…

340.148…

232.493…

108.272…

74.005…

4/17 447.518…

305.882…

335.639…

229.411…

111.879…

76.470…

Canonical BP scales are between here...
19/81 446.137…

304.938…

328.733…

224.691…

117.404…

80.246…

15/64 445.770…

[[1]]

326.898…

[[2]]

118.872…

81.25

445.533…

304.525…

325.710…

222.625…

119.822…

81.899…

26/111 445.502…

304.504

325.559…

222.522

119.943…

81.981

11/47 445.138…

304.255…

323.737…

221.276…

121.401…

82.978…

29/124 444.812…

304.032…

322.105…

220.161…

122.706…

83.870…

Golden BP is near here
18/77 444.612…

303.896…

321.109…

219.480…

123.503…

84.415…

25/107 444.382…

303.738…

319.955…

218.691…

120.426…

85.046…

7/30 443.789…

303.3

316.992…

216.6

126.797…

86.6

24/103 443.173…

302.912…

313.914…

214.563…

129.259…

88.349…

17/73 442.921…

302.739…

312.650…

213.698…

130.270…

89.041…

27/116 442.696…

302.586…

311.527…

212.931…

131.169…

89.655…

10/43 442.315…

302.325…

309.620…

211.627…

132.694…

90.697…

23/99 441.868…

302.02

307.386…

210.10

134.481…

91.91

13/56 441.525…

301.785…

305.671…

208.928…

135.853…

92.857…

16/69 441.033…

301.449…

303.210…

207.246…

137.822…

94.202…

3/13 438.912…

300

292.608…

200

146.304…

100

...and here

Boundary of propriety for Lambda scale

17/74 436.935…

298.648

282.723…

193.243

154.212…

105.405

14/61 436.514…

298.360…

280.616…

191.803…

155.897…

106.557…

25/109 436.228…

298.165…

279.186…

190.825…

157.042…

207.339…

11/48 435.865

297.916

277.368…

189.583

158.496…

108.3

30/131 435.562…

297.709…

275.856…

188.549…

159.706…

109.160…

19/83 435.387…

297.590…

274.981…

187.951…

160.405…

109.638…

27/118 435.193…

297.457…

274.010…

187.288…

161.182…

110.169…

8/35 434.732…

297.142…

271.707…

185.714…

163.024…

111.428…

29/127 434.304…

296.850…

269.568…

184.251…

164.736…

112.598…

21/92 434.141…

596.739…

268.754…

183.695…

165.387…

113.043…

34/149 434.003…

296.644…

268.060…

183.221…

165.942…

113.422…

Golden Lambda scale is near here

18\7*30\11=7

13/57 433.779…

296.491…

266.941…

182.456…

166.838…

114.035…

18\7*30\11=7
31/136 433.533…

296.323…

265.714…

181.617…

167.819…

114.705…

18/79 433.356…

296.202…

264.829…

181.012…

168.527…

115.189…

23/101 433.118…

296.039…

263.637…

180.198…

169.481…

115.841…

5/22 432.262…

295.45

259.357…

177.27

172.905…

118.18

22/97 431.371…

294.845…

254.901…

174.226…

176.470…

120.618…

17/75 431.109…

294.6

253.594…

173.3

177.515…

121.3

29/128 430.911…

294.531…

252.603…

172.656…

178.308…

121.875

12/53 430.631…

294.339…

251.201…

171.698…

179.429…

122.641…

31/137 430.369…

294.160…

249.891…

170.802…

180.477…

123.357…

19/84 430.204…

294.047…

249.065…

170.238…

181.138…

123.809…

26/115 430.007…

293.913…

248.081…

169.565…

181.926…

124.347…

7/31 429.473…

293.548…

245.413…

167.741…

184.060…

125.806…

23/102 428.872…

293.137…

242.406…

165.686…

186.466…

127.450…

16/71 428.609…

292.957…

241.092…

164.788…

187.516…

128.169…

25/111 428.368…

292.792

239.886…

163.963

188.482…

128.828

9/40 427.939…

292.5

237.744…

162.5

190.195…

130

20/89 427.405…

292.134…

235.073…

160.674…

192.332…

131.460…

11/49 426.969…

291.836…

232.892…

159.183…

194.077…

132.653…

13/58 426.300…

291.379…

229.546…

156.896…

196.753…

134.482…

2/9 422.656…

288.8

211.328…

144.4

Separatrix of Lambda and Anti-Lambda scales
13/59 419.074…

286.440…

225.655…

154.237…

193.419…

132.203…

11/50 418.430…

286

228.234…

156

190.195…

130

20/91 418.012…

285.714…

229.906…

157.142…

188.105…

128.571…

9/41 417.502…

285.365…

231.945…

158.536…

185.556…

126.829…

25/114 417.095…

285.087…

233.573…

159.649…

183.521…

125.438…

16/73 416.866…

284.931…

234.487…

160.273…

182.379…

124.657…

23/105 416.618…

284.761…

235.480…

160.952…

181.138…

123.809…

7/32 416.052…

284.375

237.744…

162.5

178.308…

121.875

26/119 415.553…

284.033…

239.742…

163.865…

175.810…

120.168…

19/87 415.369…

283.908…

240.477…

164.367…

174.892…

119.540…

31/142 415.215…

283.802…

241.092…

164.788…

174.122…

119.014…

12/55 414.972…

283.63

242.067…

165.45

172.905…

118.18

29/133 414.711…

283.458…

243.107…

166.165…

171.604…

117.293…

17/78 414.528…

283.3

243.840…

166.6

170.688…

116.6

22/101 414.287…

283.168…

244.806…

167.326…

169.481…

115.841…

5/23 413.468…

282.608…

248.081…

169.565…

165.387…

113.043…

23/106 412.688…

282.075…

251.201…

171.698…

161.486…

110.377…

18/83 412.472…

281.927…

252.066…

172.289…

160.405…

109.638…

31/143 412.311…

281.81

252.707…

172.72

159.604…

109.09

13/60 412.090…

281.6

253.594…

173.3

158.496…

108.3

34/157 411.888…

281.528…

254.401…

173.885…

157.486…

107.643…

Golden Anti-Lambda scale is near here
21/97 411.763…

281.443…

254.901…

174.226…

156.862…

107.216…

29/134 411.617…

281.343…

255.486…

174.626…

156.130…

103.716…

8/37 411.233…

281.081.

257.020…

175.675

154.212…

105.405

27/125 410.822…

280.8

258.665…

176.8

152.156…

104

19/88 410.649…

280.681…

259.357…

177.27

151.291…

103.409…

30/139 410.494…

280.575…

259.979…

177.697…

150.514…

102.877…

11/51 410.225…

280.392…

261.052…

178.431…

149.173…

101.960…

25/116 409.904…

280.172…

262.338…

179.310…

147.565…

100.862……

14/65 409.651…

280

263.347…

180

146.304…

100

17/79 409.281…

279.746…

264.819…

181.012…

144.452…

98.734…

3/14 407.561…

278.571…

271.707…

185.714…

135.853…

92.857…

Boundary of propriety for Anti-Lambda scale
16/75 405.750…

277.3

278.953…

190.6

126.797…

86.6

13/61 405.334…

277.049…

280.616…

191.803…

124.718…

85.245…

23/108 405.045…

276.851

281.771…

192.592

123.274…

84.259

10/47 404.671…

276.595…

283.269…

193.617…

121.401…

82.978…

27/127 404.352…

276.377…

284.544…

194.488…

119.808…

81.889…

17/80 404.165…

276.25

285.293…

195

118.872…

81.25

24/113 403.955…

276.106…

286.134…

195.575…

117.820…

80.530…

7/33 403.445…

275.75

288.175…

196.97

115.270…

78.78

25/118 402.956…

275.423…

290.128…

198.305…

112.827…

77.118…

18/85 402.766…

275.294…

290.887…

198.823…

111.879…

76.470…

29/137 402.603…

275.182…

291.540…

199.270…

111.063…

75.912…

11/52 402.336…

275

292.608…

200

109.728…

75

26/123 402.039…

274.796…

293.797…

200.813…

108.241…

73.983…

402.014…

274.779…

293.896…

200.880…

108.118…

73.899…

15/71 401.821…

274.647…

294.669…

201.408…

107.152…

73.239…

19/90 401.523…

274.4

295.859…

202.2

105.664…

72.2

4\19 400.411…

273.684…

300.308…

205.263…

100.103…

68.421…

399.692…

273.192…

303.185…

207.229…

96.506…

65.963…

17/81 399.175…

272.839…

305.252…

208.641…

93.923…

64.197…

13/62 398.797…

272.580…

306.766…

209.677…

92.030…

62.903…

22/105 398.505…

272.380…

307.935…

210.476…

90.569…

61.904…

9/43 398.083…

272.093…

309.620…

211.627…

88.463…

60.465…

23/110 397.681…

271.81

311.229…

212.72

86.452…

59.09

14/67 397.423…

271.641…

312.261…

213.432…

85.162…

58.208…

19/91 397.111…

271.428…

313.509…

214.285…

83.602…

57.143…

5/24 396.240…

270.83

316.992…

216.6

79.248

54.16

16/77 395.211…

270.129…

321.109…

219.480…

74.102…

50.649…

11/53 394.745…

269.811…

322.973…

220.754…

71.771…

49.056…

17/82 394.307…

269.512…

324.724…

221.951…

69.583…

47.560…

6/29 393.507…

268.965…

327.923…

224.137…

65.584…

44.827…

13/63 392.467

265.254

332.087

226.984

60.3795

41.27

7/34 391.578…

267.647…

335.639…

229.411…

55.939…

38.235…

8/39 390.144…

266.6

341.376…

233.3

48.768

33.3

1/5 380.391…

260

0