130edo
130edo divides the octave into 130 parts of size 9.231 cents each.
130edo is a zeta peak edo, a zeta peak integer edo, and a zeta integral edo but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the optimal patent val for 11-limit hemiwürschmidt and sesquart and 13-limit harry temperaments.
7-limit commas: 2401/2400, 3136/3125, 19683/19600
11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993
13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363
17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875
Intervals
Script error: No such module "primes_in_edo".
Degree | Cents | Associated Temperament |
---|---|---|
0 | 0.000 | |
1 | 9.231 | |
2 | 18.462 | |
3 | 27.692 | |
4 | 36.923 | |
5 | 46.154 | |
6 | 55.385 | |
7 | 64.615 | |
8 | 73.846 | |
9 | 83.077 | Harry |
10 | 92.308 | |
11 | 101.538 | |
12 | 110.769 | |
13 | 120.000 | |
14 | 129.231 | |
15 | 138.462 | |
16 | 147.692 | |
17 | 156.923 | |
18 | 166.154 | |
19 | 175.385 | Sesquart |
20 | 184.615 | |
21 | 193.846 | Hemiwürschmidt |
22 | 203.077 | |
23 | 212.308 | |
24 | 221.538 | |
25 | 230.769 | |
26 | 240.000 | |
27 | 249.231 | Hemischismic |
28 | 258.462 | |
29 | 267.692 | |
30 | 276.923 | |
31 | 286.154 | |
32 | 295.385 | |
33 | 304.615 | |
34 | 313.846 | |
35 | 323.077 | |
36 | 332.308 | |
37 | 341.538 | |
38 | 350.769 | |
39 | 360.000 | |
40 | 369.231 | |
41 | 378.462 | |
42 | 387.692 | |
43 | 396.923 | |
44 | 406.154 | |
45 | 415.385 | |
46 | 424.615 | |
47 | 433.846 | |
48 | 443.077 | |
49 | 452.308 | |
50 | 461.538 | |
51 | 470.769 | |
52 | 480.000 | |
53 | 489.231 | |
54 | 498.462 | |
55 | 507.692 | |
56 | 516.923 | |
57 | 526.154 | |
58 | 535.385 | |
59 | 544.615 | |
60 | 553.846 | |
61 | 563.077 | |
62 | 572.308 | |
63 | 581.538 | |
64 | 590.769 | |
65 | 600.000 | |
… | … | … |
step | cents | distance to the nearest JI interval
(selected ratios) |
---|---|---|
13 (13/130) | 120.000 | 15/14 (+0.557 ¢) |
7 (20/130) | 184.615 | 10/9 (+2.211 ¢) |
9 (29/130) | 267.692 | 7/6 (+0,821 ¢) |
9 (38/130) | 350.769 | 11/9 (+3.361 ¢) |
9 (47/130) | 433.846 | 9/7 (-1.238 ¢) |
7 (54/130) | 498.462 | 4/3 (+0.417 ¢) |
13 (67/130) | 618.462 | 10/7 (+0.974 ¢) |
9 (76/130) | 701.538 | 3/2 (-0.417 ¢) |
7 (83/130) | 766.154 | 14/9 (+1.238 ¢) |
13 (96/130) | 886.154 | 5/3 (+1.795 ¢) |
5 (101/130) | 932.308 | 12/7 (-0.821 ¢) |
13 (114/130) | 1052.308 | 11/6 (+2.945 ¢) |
7 (121/130) | 1116.923 | 21/11 (-2.540 ¢) |
9 (130/130) | 1200.000 | Octave (2/1, ±0 ¢) |
Music
- The Paradise of Cantor play by Gene Ward Smith
- "Narrative Wars" by Sevish (uses a 14-tone (13 7 9 9 9 7 13 9 7 13 5 13 7 9) subset of 130-EDO, from the 2016 compilation album "Next Xen")