Prime factorization
|
2 × 3
|
Step size
|
64.3856 ¢
|
Octave
|
19\6ed5/4 (1223.33 ¢)
|
Twelfth
|
30\6ed5/4 (1931.57 ¢) (→ 5\1ed5/4)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
Special properties
|
|
6ED5/4 is the equal division of the just major third into six parts of 64.3856 cents each, corresponding to 18.6377 edo. It is related to the 17-limit temperament which tempers out 561/560, 715/714, 729/728, 847/845, and 5632/5625, which is supported by 149edo and 205edo.
Intervals
degree
|
cents value
|
ratio
|
0
|
0.0000
|
1/1
|
1
|
64.3856
|
(5/4)1/6
|
2
|
128.7712
|
(5/4)1/3
|
3
|
193.1569
|
(5/4)1/2
|
4
|
257.5425
|
(5/4)2/3
|
5
|
321.9281
|
(5/4)5/6
|
6
|
386.3137
|
5/4
|
7
|
450.6993
|
(5/4)7/6
|
8
|
515.0850
|
(5/4)4/3
|
9
|
579.4706
|
(5/4)3/2
|
10
|
643.8562
|
(5/4)5/3
|
11
|
708.2418
|
(5/4)11/6
|
12
|
772.6274
|
(5/4)2 = 25/16
|
13
|
837.0130
|
(5/4)13/6
|
14
|
901.3987
|
(5/4)7/3
|
15
|
965.7843
|
(5/4)5/2
|
16
|
1030.1699
|
(5/4)8/3
|
17
|
1094.5555
|
(5/4)17/6
|
18
|
1158.9411
|
(5/4)3 = 125/64
|
19
|
1223.3268
|
(5/4)19/6
|
20
|
1287.7124
|
(5/4)10/3
|
21
|
1352.0980
|
(5/4)7/2
|
22
|
1416.4836
|
(5/4)11/3
|
23
|
1480.8692
|
(5/4)23/6
|
24
|
1545.2549
|
(5/4)4 = 625/256
|
25
|
1609.6405
|
(5/4)25/6
|
26
|
1674.0261
|
(5/4)13/3
|
27
|
1738.4117
|
(5/4)9/2
|
28
|
1802.7973
|
(5/4)14/3
|
29
|
1867.1830
|
(5/4)29/6
|
30
|
1931.5686
|
(5/4)5 = 3125/1024
|
31
|
1995.9542
|
(5/4)31/6
|
32
|
2060.3398
|
(5/4)16/3
|
33
|
2124.7254
|
(5/4)11/2
|
34
|
2189.1110
|
(5/4)17/3
|
35
|
2253.4967
|
(5/4)35/6
|
36
|
2317.8823
|
(5/4)6 = 15625/4096
|
37
|
2382.2679
|
(5/4)37/6
|
38
|
2446.6535
|
(5/4)19/3
|
39
|
2511.0391
|
(5/4)13/2
|
40
|
2575.4248
|
(5/4)20/3
|
41
|
2639.8104
|
(5/4)41/6
|
42
|
2704.1960
|
(5/4)7 = 78125/16384
|
43
|
2768.5816
|
(5/4)43/6
|
44
|
2832.9672
|
(5/4)22/3
|
45
|
2897.3529
|
(5/4)15/2
|
46
|
2961.7385
|
(5/4)23/3
|
47
|
3026.1241
|
(5/4)47/6
|
48
|
3090.5097
|
(5/4)8 = 390625/65536
|
49
|
3154.8953
|
(5/4)49/6
|
50
|
3219.2809
|
(5/4)25/3
|
51
|
3283.6666
|
(5/4)17/2
|
52
|
3348.0522
|
(5/4)26/3
|
53
|
3412.4378
|
(5/4)53/6
|
54
|
3476.8234
|
(5/4)9 = 1953125/262144
|
55
|
3541.2090
|
(5/4)55/6
|
56
|
3605.5947
|
(5/4)28/3
|
57
|
3669.9803
|
(5/4)19/2
|
58
|
3734.3659
|
(5/4)29/3
|
59
|
3798.7515
|
(5/4)59/6
|
60
|
3863.1371
|
(5/4)10 = 9765625/1048576
|
61
|
3927.5228
|
(5/4)61/6
|
62
|
3991.9084
|
(5/4)31/3
|
63
|
4056.2940
|
(5/4)21/2
|
64
|
4120.6796
|
(5/4)32/3
|
65
|
4185.0652
|
(5/4)65/6
|
66
|
4249.4509
|
(5/4)11 = 48828125/4194304
|
67
|
4313.8365
|
(5/4)67/6
|
68
|
4378.2221
|
(5/4)34/3
|
69
|
4442.6077
|
(5/4)23/2
|
70
|
4506.9933
|
(5/4)35/3
|
71
|
4571.3789
|
(5/4)71/6
|
72
|
4635.7646
|
(5/4)12 = 244140625/16777216
|
73
|
4700.1502
|
(5/4)73/6
|
74
|
4764.5358
|
(5/4)37/3
|
75
|
4828.9214
|
(5/4)25/2
|
76
|
4893.3070
|
(5/4)38/3
|
77
|
4957.6927
|
(5/4)77/6
|
78
|
5022.0783
|
(5/4)13 = 1220703125/67108864
|