76edo

From Xenharmonic Wiki
Revision as of 14:42, 27 November 2023 by FloraC (talk | contribs) (-redundant categories)
Jump to navigation Jump to search
← 75edo 76edo 77edo →
Prime factorization 22 × 19
Step size 15.7895 ¢ 
Fifth 44\76 (694.737 ¢) (→ 11\19)
Semitones (A1:m2) 4:8 (63.16 ¢ : 126.3 ¢)
Dual sharp fifth 45\76 (710.526 ¢)
Dual flat fifth 44\76 (694.737 ¢) (→ 11\19)
Dual major 2nd 13\76 (205.263 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

Approximation of odd harmonics in 76edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -7.22 -7.37 -5.67 +1.35 +1.31 -3.69 +1.20 +5.57 +2.49 +2.90 +3.30
Relative (%) -45.7 -46.7 -35.9 +8.6 +8.3 -23.3 +7.6 +35.3 +15.8 +18.4 +20.9
Steps
(reduced)
120
(44)
176
(24)
213
(61)
241
(13)
263
(35)
281
(53)
297
(69)
311
(7)
323
(19)
334
(30)
344
(40)

This tuning's 5-limit patent val is contorted in the 5-limit, reflecting the fact that 76 = 4 * 19. In the 7-limit it tempers out 2401/2400 as well as 81/80, and so supports squares temperament. In the 11-limit, it tempers out 245/242 and 385/384, and supports the 24&26 temperament. In the 13-limit, it tempers out 105/104, 144/143, 351/350 and 364/363. While the 44\76 = 11\19 fifth is already flat, the 43\76 fifth, even flatter, is an almost perfect approximation to the hornbostel temperament POTE fifth, whereas its sharp fifth, 45\76, makes for an excellent superpyth fifth. Hence you can do hornbostel/mavila, squares/meantone, and superpyth all with the same equal division.

Using non-patent vals, 76edo provides an excellent tuning for teff temperament, a low complexity, medium accuracy, and high limit (17 or 19) temperament.

Intervals

Steps Cents Approximate ratios Ups and downs notation
(Dual flat fifth 44\76)
Ups and downs notation
(Dual sharp fifth 45\76)
0 0 1/1 D D
1 15.8 ^D, ^E♭♭♭ ^D, vvE♭
2 31.6 ^^D, vvE♭♭ ^^D, vE♭
3 47.4 36/35, 38/37 vD♯, vE♭♭ ^3D, E♭
4 63.2 29/28 D♯, E♭♭ ^4D, ^E♭
5 78.9 23/22 ^D♯, ^E♭♭ ^5D, ^^E♭
6 94.7 ^^D♯, vvE♭ v5D♯, ^3E♭
7 110.5 vD𝄪, vE♭ v4D♯, ^4E♭
8 126.3 14/13 D𝄪, E♭ v3D♯, ^5E♭
9 142.1 ^D𝄪, ^E♭ vvD♯, v5E
10 157.9 34/31 ^^D𝄪, vvE vD♯, v4E
11 173.7 32/29 vD♯𝄪, vE D♯, v3E
12 189.5 19/17, 29/26, 39/35 E ^D♯, vvE
13 205.3 ^E, ^F♭♭ ^^D♯, vE
14 221.1 33/29 ^^E, vvF♭ E
15 236.8 vE♯, vF♭ ^E, vvF
16 252.6 22/19, 37/32 E♯, F♭ ^^E, vF
17 268.4 7/6 ^E♯, ^F♭ F
18 284.2 33/28 ^^E♯, vvF ^F, vvG♭
19 300 19/16, 25/21 vE𝄪, vF ^^F, vG♭
20 315.8 6/5 F ^3F, G♭
21 331.6 23/19 ^F, ^G♭♭♭ ^4F, ^G♭
22 347.4 ^^F, vvG♭♭ ^5F, ^^G♭
23 363.2 vF♯, vG♭♭ v5F♯, ^3G♭
24 378.9 F♯, G♭♭ v4F♯, ^4G♭
25 394.7 ^F♯, ^G♭♭ v3F♯, ^5G♭
26 410.5 33/26 ^^F♯, vvG♭ vvF♯, v5G
27 426.3 vF𝄪, vG♭ vF♯, v4G
28 442.1 F𝄪, G♭ F♯, v3G
29 457.9 ^F𝄪, ^G♭ ^F♯, vvG
30 473.7 ^^F𝄪, vvG ^^F♯, vG
31 489.5 vF♯𝄪, vG G
32 505.3 G ^G, vvA♭
33 521.1 23/17 ^G, ^A♭♭♭ ^^G, vA♭
34 536.8 ^^G, vvA♭♭ ^3G, A♭
35 552.6 11/8 vG♯, vA♭♭ ^4G, ^A♭
36 568.4 25/18, 32/23 G♯, A♭♭ ^5G, ^^A♭
37 584.2 7/5 ^G♯, ^A♭♭ v5G♯, ^3A♭
38 600 ^^G♯, vvA♭ v4G♯, ^4A♭
39 615.8 10/7 vG𝄪, vA♭ v3G♯, ^5A♭
40 631.6 23/16, 36/25 G𝄪, A♭ vvG♯, v5A
41 647.4 16/11 ^G𝄪, ^A♭ vG♯, v4A
42 663.2 ^^G𝄪, vvA G♯, v3A
43 678.9 34/23 vG♯𝄪, vA ^G♯, vvA
44 694.7 A ^^G♯, vA
45 710.5 ^A, ^B♭♭♭ A
46 726.3 ^^A, vvB♭♭ ^A, vvB♭
47 742.1 vA♯, vB♭♭ ^^A, vB♭
48 757.9 A♯, B♭♭ ^3A, B♭
49 773.7 ^A♯, ^B♭♭ ^4A, ^B♭
50 789.5 ^^A♯, vvB♭ ^5A, ^^B♭
51 805.3 vA𝄪, vB♭ v5A♯, ^3B♭
52 821.1 37/23 A𝄪, B♭ v4A♯, ^4B♭
53 836.8 ^A𝄪, ^B♭ v3A♯, ^5B♭
54 852.6 ^^A𝄪, vvB vvA♯, v5B
55 868.4 33/20, 38/23 vA♯𝄪, vB vA♯, v4B
56 884.2 5/3 B A♯, v3B
57 900 32/19, 37/22 ^B, ^C♭♭ ^A♯, vvB
58 915.8 ^^B, vvC♭ ^^A♯, vB
59 931.6 12/7 vB♯, vC♭ B
60 947.4 19/11 B♯, C♭ ^B, vvC
61 963.2 ^B♯, ^C♭ ^^B, vC
62 978.9 ^^B♯, vvC C
63 994.7 vB𝄪, vC ^C, vvD♭
64 1010.5 34/19 C ^^C, vD♭
65 1026.3 29/16 ^C, ^D♭♭♭ ^3C, D♭
66 1042.1 31/17 ^^C, vvD♭♭ ^4C, ^D♭
67 1057.9 vC♯, vD♭♭ ^5C, ^^D♭
68 1073.7 13/7 C♯, D♭♭ v5C♯, ^3D♭
69 1089.5 ^C♯, ^D♭♭ v4C♯, ^4D♭
70 1105.3 ^^C♯, vvD♭ v3C♯, ^5D♭
71 1121.1 vC𝄪, vD♭ vvC♯, v5D
72 1136.8 C𝄪, D♭ vC♯, v4D
73 1152.6 35/18, 37/19 ^C𝄪, ^D♭ C♯, v3D
74 1168.4 ^^C𝄪, vvD ^C♯, vvD
75 1184.2 vC♯𝄪, vD ^^C♯, vD
76 1200 2/1 D D