Porcupine family
The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is [1 -5 3⟩, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
All these 7-limit extensions notably share the same 2.3.5.11 subgroup, porkypine.
Temperaments discussed elsewhere include opossum, oxygen, and jamesbond.
Porcupine
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
- Mapping generators: ~2, ~10/9
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 164.1659
- 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
- 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015]
Badness: 0.030778
2.3.5.11 subgroup (porkypine)
Subgroup: 2.3.5.11
Comma list: 55/54, 100/99
Sval mapping: [⟨1 2 3 4], ⟨0 -3 -5 -4]]
Gencom mapping: [⟨1 2 3 0 4], ⟨0 -3 -5 0 -4]]
Gencom: [2 10/9; 55/54, 100/99]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.8867
Optimal GPV sequence: Template:Val list
Badness: 0.0097
Undecimation
Subgroup: 2.3.5.11.13
Comma list: 55/54, 100/99, 512/507
Sval mapping: [⟨1 5 8 8 2], ⟨0 -6 -10 -8 3]]
- Sval mapping generators: ~2, ~65/44
Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094
Optimal GPV sequence: Template:Val list
Badness: 0.0305
Septimal porcupine
Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 163.2032
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- Eigenmonzo basis: 2.5
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis: 2.9/7
- 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]
Badness: 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.1055
Minimax tuning:
- 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis: 2.9/7
Tuning ranges:
- 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
- 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
Optimal GPV sequence: Template:Val list
Badness: 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.4425
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- Eigenmonzo basis: 2.11
Tuning ranges:
- 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
- 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
- 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636
Optimal GPV sequence: Template:Val list
Badness: 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 162.6361
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- Eigenmonzo basis: 2.13/11
Tuning ranges:
- 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
- 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
- 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 162.162]
- 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162
Optimal GPV sequence: Template:Val list
Badness: 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.3781
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14⟩
- Eigenmonzo basis: 2.13/7
Optimal GPV sequence: {{val list| 15f, 22f, 37, 59f }
Badness: 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.6778
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis: 2.9/7
Optimal GPV sequence: Template:Val list
Badness: 0.026043
Hystrix
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15EDO. They can try the even sharper fifth of hystrix in 68EDO and see how that suits.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
POTE generator: ~8/7 = 158.868
- 7- and 9-odd-limit: ~8/7 = [3/5 0 -1/5⟩
- Eigenmonzos (unchanged intervals): 2, 5/4
Badness: 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
POTE generator: ~8/7 = 158.750
Optimal GPV sequence: Template:Val list
Badness: 0.026790
Porky
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
POTE generator: ~10/9 = 164.412
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
- Eigenmonzos (unchanged intervals): 2, 7/5
Badness: 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
POTE generator: ~10/9 = 164.552
Minimax tuning:
- 11-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
- Eigenmonzos (unchanged intervals): 2, 7/5
Optimal GPV sequence: Template:Val list
Badness: 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
POTE generator: ~10/9 = 164.953
Optimal GPV sequence: Template:Val list
Badness: 0.026543
Coendou
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
POTE generator: ~10/9 = 166.041
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
- Eigenmonzos (unchanged intervals): 2, 3
Badness: 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
POTE generator: ~10/9 = 165.981
Minimax tuning:
- 11-odd-limit: ~10/9 = [2/3 -1/3⟩
- Eigenmonzos (unchanged intervals): 2, 3
Optimal GPV sequence: Template:Val list
Badness: 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
POTE generator: ~10/9 = 165.974
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/3 -1/3⟩
- Eigenmonzos (unchanged intervals): 2, 3
Optimal GPV sequence: Template:Val list
Badness: 0.030233
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22EDO provides the obvious tuning, but if you are looking for an alternative, you could try the ⟨146 232 338 411] val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
POTE generator: ~9/7 = 435.648
Badness: 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
POTE generator: ~9/7 = 435.386
Optimal GPV sequence: Template:Val list
Badness: 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
POTE generator: ~9/7 = 435.861
Optimal GPV sequence: Template:Val list
Badness: 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
POTE generator: ~9/7 = 437.078
Optimal GPV sequence: Template:Val list
Badness: 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
POTE generator: ~9/7 = 435.425
Optimal GPV sequence: Template:Val list
Badness: 0.068406
- Music
Phobos Light by Chris Vaisvil in Hedgehog[14] tuned to 22EDO.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
POTE generator: ~21/20 = 82.505
Badness: 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
POTE generator: ~21/20 = 82.504
Optimal GPV sequence: Template:Val list
Badness: 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
POTE generator: ~21/20 = 82.530
Optimal GPV sequence: Template:Val list
Badness: 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
POTE generator: ~21/20 = 81.759
Optimal GPV sequence: Template:Val list
Badness: 0.029816
- Music
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
POTE generator: ~9/7 = 454.448
Badness: 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
POTE generator: ~9/7 = 454.512
Optimal GPV sequence: Template:Val list
Badness: 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
POTE generator: ~13/10 = 454.529
Optimal GPV sequence: Template:Val list
Badness: 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
POTE generator: ~36/35 = 54.384
Badness: 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
POTE generator: ~36/35 = 54.376
Optimal GPV sequence: Template:Val list
Badness: 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
POTE generator: ~36/35 = 54.665
Optimal GPV sequence: Template:Val list
Badness: 0.044739