3L 5s
↖ 2L 4s | ↑ 3L 4s | 4L 4s ↗ |
← 2L 5s | 3L 5s | 4L 5s → |
↙ 2L 6s | ↓ 3L 6s | 4L 6s ↘ |
┌╥┬╥┬┬╥┬┬┐ │║│║││║│││ ││││││││││ └┴┴┴┴┴┴┴┴┘
ssLssLsL
3L 5s, named checkertonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 3 large steps and 5 small steps, repeating every octave. Generators that produce this scale range from 750 ¢ to 800 ¢, or from 400 ¢ to 450 ¢.
In contrast to oneirotonic (5L 3s) scales, which often require the usage of completely new chords to have consonant-sounding music, some checkertonic scales contain approximations to a perfect fifth (3/2, usually as a dim. chk6th or maj. chk5th), and thus can be used for traditional root-3rd-P5 harmony.
There are two significant harmonic entropy minima with this MOS pattern. Sensi, in which the generator is a 9/7, two of them make a 5/3, and seven of them make a 3/2, is the proper one. Squares, in which the generator is also a 9/7, but two of them make an 18/11 and four of them make a 4/3, is improper.
Standing assumptions
The TAMNAMS system is used in this article to refer to 3L 5s step size ratios and step ratio ranges.
The notation used in this article is JKLMNOPQJ = sLssLsLs (Anti-Ultharian), &/@ = up/down by chroma.
Names
The TAMNAMS name for 3L 5s is checkertonic.
Intervals
Note: In TAMNAMS, a k-step interval class in checkertonic may be called a "k-step", "k-mosstep", or "k-checkstep". 1-indexed terms such as "mos(k+1)th" are discouraged for non-diatonic mosses.
Tuning ranges
Simple tunings
Degree | Size in 11edo (basic) | Size in 14edo (hard) | Size in 19edo (soft) | Note name on J | #Gens up |
---|---|---|---|---|---|
min. chk2nd | 1\11, 109.1 | 1\14, 85.7 | 2\19, 126.3 | K | +3 |
maj. chk2nd | 2\11, 218.2 | 3\14, 257.1 | 3\19, 189.5 | K& | -5 |
min. chk3rd | 2\11, 218.2 | 2\14, 171.4 | 4\19, 252.6 | L@ | +6 |
maj. chk3rd | 3\11, 327.3 | 4\14, 342.9 | 5\19, 315.8 | L | -2 |
perf. chk4th | 4\11, 436.4 | 5\14, 428.6 | 7\19, 442.1 | M | +1 |
aug. chk4th | 5\11, 545.5 | 7\14, 600.0 | 8\19, 505.3 | M& | -7 |
min. chk5th | 5\11, 545.5 | 6\14, 514.3 | 9\19, 568.4 | N | +4 |
maj. chk5th | 6\11, 656.6 | 8\14, 685.7 | 10\19, 631.6 | N& | -4 |
dim. chk6th | 6\11, 656.6 | 7\14, 600.0 | 11\19, 694.7 | O@ | +7 |
perf. chk6th | 7\11, 763.6 | 8\14, 771.4 | 12\19, 757.9 | O | -1 |
min. chk7th | 8\11, 872.7 | 10\14, 857.1 | 14\19, 884.2 | P | +2 |
maj. chk7th | 9\11, 981.8 | 12\14, 1028.6 | 15\19, 947.4 | P& | -6 |
min. chk8th | 9\11, 981.8 | 11\14, 942.9 | 16\19, 1010.5 | Q@ | +5 |
maj. chk8th | 10\11, 1090.9 | 13\14, 1114.3 | 17\19, 1073.7 | Q | -3 |
Parasoft
Parasoft checkertonic is the narrow region between 7\19 (442.1¢) and 10\27 (444.4¢).
Sortable table of major and minor intervals in parasoft checkertonic tunings:
Degree | Size in 19edo (soft) | Size in 27edo (supersoft) | Size in 46edo | Note name on J | Approximate ratios | #Gens up |
---|---|---|---|---|---|---|
unison | 0\19, 0.00 | 0\27, 0.00 | 0\46, 0.00 | J | 1/1 | 0 |
min. chk2nd | 2\19, 126.3 | 3\27, 133.3 | 5\46, 130.4 | K | 14/13 | +3 |
maj. chk2nd | 3\19, 189.5 | 4\27, 177.8 | 7\46, 182.6 | K& | 10/9 | -5 |
min. chk3rd | 4\19, 252.6 | 6\27, 266.7 | 10\46, 260.9 | L@ | 7/6 | +6 |
maj. chk3rd | 5\19, 315.8 | 7\27, 311.1 | 12\46, 313.0 | L | 6/5 | -2 |
perf. chk4th | 7\19, 442.1 | 10\27, 444.4 | 17\46, 443.5 | M | 9/7, 13/10 | +1 |
aug. chk4th | 8\19, 505.3 | 11\27, 488.9 | 19\46, 495.7 | M& | 4/3 | -7 |
min. chk5th | 9\19, 568.4 | 13\27, 577.8 | 22\46, 573.9 | N | 7/5, 18/13 | +4 |
maj. chk5th | 10\19, 631.6 | 14\27, 622.2 | 24\46, 626.1 | N& | 10/7, 13/9 | -4 |
dim. chk6th | 11\19, 694.7 | 16\27, 711.1 | 27\46, 704.3 | O@ | 3/2 | +7 |
perf. chk6th | 12\19, 757.9 | 17\27, 755.6 | 20\46, 756.5 | O | 14/9, 20/13 | -1 |
min. chk7th | 14\19, 884.2 | 20\27, 888.9 | 34\46, 887.0 | P | 5/3 | +2 |
maj. chk7th | 15\19, 947.4 | 21\27, 933.3 | 36\46, 939.1 | P& | 12/7 | -6 |
min. chk8th | 16\19, 1010.5 | 23\27, 1022.2 | 39\46, 1017.4 | Q@ | 9/5 | +5 |
maj. chk8th | 17\19, 1073.7 | 24\27, 1066.7 | 41\46, 1069.6 | Q | 13/7 | -3 |
Tunings in this region have a regular temperament interpretation called sensi.
Modes
Checkertonic modes can be named by prefixing anti- to their counterpart modes in the MOS sister oneirotonic.
- Anti-Sarnathian (sar-NA(H)TH-iən): LsLssLss
- Anti-Hlanithian (lə-NITH-iən): LssLsLss
- Anti-Kadathian (kə-DA(H)TH-iən): LssLssLs
- Anti-Mnarian (mə-NA(I)R-iən): sLsLssLs
- Anti-Ultharian (ul-THA(I)R-iən): sLssLsLs
- Anti-Celephaïsian (kel-ə-FAY-zhən): sLssLssL
- Anti-Illarnekian (ill-ar-NEK-iən): ssLsLssL
- Anti-Dylathian (də-LA(H)TH-iən): ssLssLsL
The modes on the white keys JKLMNOPQJ are:
- J Anti-Ultharian
- K Anti-Hlanithian
- L Anti-Illarnekian
- M Anti-Mnarian
- N Anti-Sarnathian
- O Anti-Celephaïsian
- P Anti-Kadathian
- Q Anti-Dylathian
Mode | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | (9) |
---|---|---|---|---|---|---|---|---|---|
Anti-Sarnathian | J | K& | L | M& | N& | O | P& | Q | (J) |
Anti-Hlanithian | J | K& | L | M | N& | O | P& | Q | (J) |
Anti-Kadathian | J | K& | L | M | N& | O | P | Q | (J) |
Anti-Mnarian | J | K | L | M | N& | O | P | Q | (J) |
Anti-Ultharian | J | K | L | M | N | O | P | Q | (J) |
Anti-Celephaïsian | J | K | L | M | N | O | P | Q@ | (J) |
Anti-Illarnekian | J | K | L@ | M | N | O | P | Q@ | (J) |
Anti-Dylathian | J | K | L@ | M | N | O@ | P | Q@ | (J) |
Temperaments
The major temperaments in this area are:
Scale tree
Generator ranges:
- Chroma-positive generator: 750 cents (5\8) to 800 cents (2\3)
- Chroma-negative generator: 400 cents (1\3) to 450 cents (3\8)
Generator | Cents | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|---|
5\8 | 750.000 | 1 | 1 | 1.000 | ||||||
27\43 | 753.488 | 6 | 5 | 1.200 | ||||||
22\35 | 754.286 | 5 | 4 | 1.250 | ||||||
39\62 | 754.839 | 9 | 7 | 1.286 | ||||||
17\27 | 755.556 | 4 | 3 | 1.333 | ||||||
46\73 | 756.164 | 11 | 8 | 1.375 | ||||||
29\46 | 756.522 | 7 | 5 | 1.400 | Sensi is in this region | |||||
41\65 | 756.923 | 10 | 7 | 1.429 | ||||||
12\19 | 757.895 | 3 | 2 | 1.500 | ||||||
43\68 | 758.824 | 11 | 7 | 1.571 | Clyde | |||||
31\49 | 759.184 | 8 | 5 | 1.600 | ||||||
50\79 | 759.494 | 13 | 8 | 1.625 | Golden checkertonic/sentry (759.4078¢) | |||||
19\30 | 760.000 | 5 | 3 | 1.667 | ||||||
45\71 | 760.563 | 12 | 7 | 1.714 | ||||||
26\41 | 760.976 | 7 | 4 | 1.750 | ||||||
33\52 | 761.538 | 9 | 5 | 1.800 | ||||||
7\11 | 763.636 | 2 | 1 | 2.000 | Basic checkertonic (Generators smaller than this are proper) | |||||
30\47 | 765.957 | 9 | 4 | 2.250 | ||||||
23\36 | 766.667 | 7 | 3 | 2.333 | ||||||
39\61 | 767.213 | 12 | 5 | 2.400 | ||||||
16\25 | 768.000 | 5 | 2 | 2.500 | ||||||
41\64 | 768.750 | 13 | 5 | 2.600 | Unnamed golden tuning (768.8815¢) | |||||
25\39 | 769.231 | 8 | 3 | 2.667 | ||||||
34\53 | 769.811 | 11 | 4 | 2.750 | Hamity | |||||
9\14 | 771.429 | 3 | 1 | 3.000 | ||||||
29\45 | 773.333 | 10 | 3 | 3.333 | ||||||
20\31 | 774.194 | 7 | 2 | 3.500 | Squares is in this region | |||||
31\48 | 775.000 | 11 | 3 | 3.667 | ||||||
11\17 | 776.471 | 4 | 1 | 4.000 | ||||||
24\37 | 778.378 | 9 | 2 | 4.500 | ||||||
13\20 | 780.000 | 5 | 1 | 5.000 | ||||||
15\23 | 782.609 | 6 | 1 | 6.000 | Roman↓, Hocus↓ | |||||
2\3 | 800.000 | 1 | 0 | → inf |