764edo: Difference between revisions
Jump to navigation
Jump to search
+RTT table and note |
→Regular temperament properties: +list of temperaments |
||
Line 62: | Line 62: | ||
|} | |} | ||
764et is the first equal temperament past [[684edo|684]] with a lower 13-limit absolute error, and is only bettered by [[935edo|935]]. It is also the first equal temperament past [[742edo|742]] with a lower 17-limit absolute error, and is only bettered by [[814edo|814]]. | 764et is the first equal temperament past [[684edo|684]] with a lower 13-limit absolute error, and is only bettered by [[935edo|935]]. It is also the first equal temperament past [[742edo|742]] with a lower 17-limit absolute error, and is only bettered by [[814edo|814]]. | ||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per 8ve | |||
! Generator<br>(Reduced) | |||
! Cents<br>(Reduced) | |||
! Associated<br>Ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 123\764 | |||
| 193.19 | |||
| 262144/234375 | |||
| [[Lunatic]] (7-limit) | |||
|- | |||
| 1 | |||
| 277\764 | |||
| 435.08 | |||
| 9/7 | |||
| [[Supermajor]] | |||
|- | |||
| 2 | |||
| 133\764 | |||
| 208.90 | |||
| 44/39 | |||
| [[Abigail]] | |||
|- | |||
| 2 | |||
| 277\764<br>(105\764) | |||
| 435.08<br>(164.92) | |||
| 9/7<br>(11/10) | |||
| [[Semisupermajor]] | |||
|} | |||
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | [[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | ||
[[Category:Zeta]] | [[Category:Zeta]] | ||
[[Category:Abigail]] | [[Category:Abigail]] |
Revision as of 08:00, 15 November 2022
← 763edo | 764edo | 765edo → |
Theory
764edo is a very strong 17-limit system distinctly consistent to the 17-odd-limit, and is the fourteenth zeta integral edo. In the 5-limit it tempers out the hemithirds comma, [38 -2 -15⟩; in the 7-limit 4375/4374; in the 11-limit 3025/3024 and 9801/9800; in the 13-limit 1716/1715, 2080/2079, 4096/4095, 4225/4224, 6656/6655 and 10648/10647; and in the 17-limit 2431/2430, 2500/2499, 4914/4913 and 5832/5831. It provides the optimal patent val for the abigail temperament in the 11-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.139 | +0.074 | +0.284 | -0.009 | -0.214 | +0.280 | -0.654 | -0.002 | -0.781 | -0.009 |
Relative (%) | +0.0 | +8.9 | +4.7 | +18.1 | -0.6 | -13.6 | +17.8 | -41.7 | -0.1 | -49.7 | -0.6 | |
Steps (reduced) |
764 (0) |
1211 (447) |
1774 (246) |
2145 (617) |
2643 (351) |
2827 (535) |
3123 (67) |
3245 (189) |
3456 (400) |
3711 (655) |
3785 (729) |
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [1211 -764⟩ | [⟨764 1211]] | -0.0439 | 0.0439 | 2.80 |
2.3.5 | [38 -2 -15⟩, [25 -48 22⟩ | [⟨764 1211 1774]] | -0.0399 | 0.0363 | 2.31 |
2.3.5.7 | 4375/4374, 52734375/52706752, [31 -6 -2 -6⟩ | [⟨764 1211 1774 2145]] | -0.0552 | 0.0412 | 2.62 |
2.3.5.7.11 | 3025/3024, 4375/4374, 131072/130977, 35156250/35153041 | [⟨764 1211 1774 2145 2643]] | -0.0436 | 0.0435 | 2.77 |
2.3.5.7.11.13 | 1716/1715, 2080/2079, 3025/3024, 4096/4095, 10549994/10546875 | [⟨764 1211 1774 2145 2643 2827]] | -0.0267 | 0.0548 | 3.49 |
2.3.5.7.11.13.17 | 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4096/4095, 4914/4913 | [⟨764 1211 1774 2145 2643 2827 3123]] | -0.0327 | 0.0528 | 3.36 |
764et is the first equal temperament past 684 with a lower 13-limit absolute error, and is only bettered by 935. It is also the first equal temperament past 742 with a lower 17-limit absolute error, and is only bettered by 814.
Rank-2 temperaments
Periods per 8ve |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 123\764 | 193.19 | 262144/234375 | Lunatic (7-limit) |
1 | 277\764 | 435.08 | 9/7 | Supermajor |
2 | 133\764 | 208.90 | 44/39 | Abigail |
2 | 277\764 (105\764) |
435.08 (164.92) |
9/7 (11/10) |
Semisupermajor |