764edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cleanup and update templates
+RTT table and note
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|764}}
{{EDO intro|764}}
== Theory ==
764edo is a very strong 17-limit system distinctly [[consistent]] to the 17-odd-limit, and is the fourteenth [[The Riemann zeta function and tuning #Zeta EDO lists|zeta integral edo]]. In the 5-limit it tempers out the hemithirds comma, {{monzo| 38 -2 -15 }}; in the 7-limit  [[4375/4374]]; in the 11-limit [[3025/3024]] and [[9801/9800]]; in the 13-limit [[1716/1715]], [[2080/2079]], [[4096/4095]], [[4225/4224]], [[6656/6655]] and [[10648/10647]]; and in the 17-limit 2431/2430, 2500/2499, 4914/4913 and [[5832/5831]]. It provides the [[optimal patent val]] for the [[abigail]] temperament in the 11-limit.
764edo is a very strong 17-limit system distinctly [[consistent]] to the 17-odd-limit, and is the fourteenth [[The Riemann zeta function and tuning #Zeta EDO lists|zeta integral edo]]. In the 5-limit it tempers out the hemithirds comma, {{monzo| 38 -2 -15 }}; in the 7-limit  [[4375/4374]]; in the 11-limit [[3025/3024]] and [[9801/9800]]; in the 13-limit [[1716/1715]], [[2080/2079]], [[4096/4095]], [[4225/4224]], [[6656/6655]] and [[10648/10647]]; and in the 17-limit 2431/2430, 2500/2499, 4914/4913 and [[5832/5831]]. It provides the [[optimal patent val]] for the [[abigail]] temperament in the 11-limit.


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|764|columns=11}}
{{Harmonics in equal|764|columns=11}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 1211 -764 }}
| [{{val| 764 1211 }}]
| -0.0439
| 0.0439
| 2.80
|-
| 2.3.5
| {{monzo| 38 -2 -15 }}, {{monzo| 25 -48 22 }}
| [{{val| 764 1211 1774 }}]
| -0.0399
| 0.0363
| 2.31
|-
| 2.3.5.7
| 4375/4374, 52734375/52706752, {{monzo| 31 -6 -2 -6 }}
| [{{val| 764 1211 1774 2145 }}]
| -0.0552
| 0.0412
| 2.62
|-
| 2.3.5.7.11
| 3025/3024, 4375/4374, 131072/130977, 35156250/35153041
| [{{val| 764 1211 1774 2145 2643 }}]
| -0.0436
| 0.0435
| 2.77
|-
| 2.3.5.7.11.13
| 1716/1715, 2080/2079, 3025/3024, 4096/4095, 10549994/10546875
| [{{val| 764 1211 1774 2145 2643 2827 }}]
| -0.0267
| 0.0548
| 3.49
|-
| 2.3.5.7.11.13.17
| 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4096/4095, 4914/4913
| [{{val| 764 1211 1774 2145 2643 2827 3123 }}]
| -0.0327
| 0.0528
| 3.36
|}
764et is the first equal temperament past [[684edo|684]] with a lower 13-limit absolute error, and is only bettered by [[935edo|935]]. It is also the first equal temperament past [[742edo|742]] with a lower 17-limit absolute error, and is only bettered by [[814edo|814]].


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Zeta]]
[[Category:Zeta]]
[[Category:Abigail]]
[[Category:Abigail]]

Revision as of 09:55, 6 October 2022

← 763edo 764edo 765edo →
Prime factorization 22 × 191
Step size 1.57068 ¢ 
Fifth 447\764 (702.094 ¢)
Semitones (A1:m2) 73:57 (114.7 ¢ : 89.53 ¢)
Consistency limit 17
Distinct consistency limit 17

Template:EDO intro

Theory

764edo is a very strong 17-limit system distinctly consistent to the 17-odd-limit, and is the fourteenth zeta integral edo. In the 5-limit it tempers out the hemithirds comma, [38 -2 -15; in the 7-limit 4375/4374; in the 11-limit 3025/3024 and 9801/9800; in the 13-limit 1716/1715, 2080/2079, 4096/4095, 4225/4224, 6656/6655 and 10648/10647; and in the 17-limit 2431/2430, 2500/2499, 4914/4913 and 5832/5831. It provides the optimal patent val for the abigail temperament in the 11-limit.

Prime harmonics

Approximation of prime harmonics in 764edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.139 +0.074 +0.284 -0.009 -0.214 +0.280 -0.654 -0.002 -0.781 -0.009
Relative (%) +0.0 +8.9 +4.7 +18.1 -0.6 -13.6 +17.8 -41.7 -0.1 -49.7 -0.6
Steps
(reduced)
764
(0)
1211
(447)
1774
(246)
2145
(617)
2643
(351)
2827
(535)
3123
(67)
3245
(189)
3456
(400)
3711
(655)
3785
(729)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [1211 -764 [764 1211]] -0.0439 0.0439 2.80
2.3.5 [38 -2 -15, [25 -48 22 [764 1211 1774]] -0.0399 0.0363 2.31
2.3.5.7 4375/4374, 52734375/52706752, [31 -6 -2 -6 [764 1211 1774 2145]] -0.0552 0.0412 2.62
2.3.5.7.11 3025/3024, 4375/4374, 131072/130977, 35156250/35153041 [764 1211 1774 2145 2643]] -0.0436 0.0435 2.77
2.3.5.7.11.13 1716/1715, 2080/2079, 3025/3024, 4096/4095, 10549994/10546875 [764 1211 1774 2145 2643 2827]] -0.0267 0.0548 3.49
2.3.5.7.11.13.17 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4096/4095, 4914/4913 [764 1211 1774 2145 2643 2827 3123]] -0.0327 0.0528 3.36

764et is the first equal temperament past 684 with a lower 13-limit absolute error, and is only bettered by 935. It is also the first equal temperament past 742 with a lower 17-limit absolute error, and is only bettered by 814.