359edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+RTT table and rank-2 temperaments
Plumtree (talk | contribs)
m Infobox ET now computes most parameters automatically
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 359 (prime)
| Step size = 3.34262¢
| Fifth = 210\359 (701.95¢)
| Semitones = 34:27 (113.65¢ : 90.25¢)
| Consistency = 11
}}
{{EDO intro|359}}
{{EDO intro|359}}



Revision as of 18:57, 4 October 2022

← 358edo 359edo 360edo →
Prime factorization 359 (prime)
Step size 3.34262 ¢ 
Fifth 210\359 (701.95 ¢)
(semiconvergent)
Semitones (A1:m2) 34:27 (113.6 ¢ : 90.25 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

359edo contains a very close approximation of the pure 3/2 fifth of 701.955 cents, with the 210\359 step of 701.94986 cents. It provides the optimal patent val for the 11-limit hera temperament.

359edo supports a type of exaggerated Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955¢) minus the Pythagorean comma (23.46¢) = 678.495¢; in 359edo this is the step 203\359 of 678.55153¢.

Pythagorean diatonic scale: 61 61 27 61 61 61 27

Exaggerated Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the square root of Pi [+1\359 step of each one][clarification needed]).

359edo is the 72nd prime edo.

Prime harmonics

Approximation of prime harmonics in 359edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.01 +1.43 +0.53 +0.21 -1.53 -1.33 -0.02 +0.14 -0.05 +1.48
Relative (%) +0.0 -0.2 +42.8 +16.0 +6.4 -45.8 -39.9 -0.6 +4.1 -1.5 +44.4
Steps
(reduced)
359
(0)
569
(210)
834
(116)
1008
(290)
1242
(165)
1328
(251)
1467
(31)
1525
(89)
1624
(188)
1744
(308)
1779
(343)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-569 359 [359 569]] +0.0016 0.0016 0.05
2.3.5 393216/390625, [-69 45 -1 [359 569 834]] -0.2042 0.2910 8.71
2.3.5.7 2401/2400, 3136/3125, [-18 24 -5 -3 [359 569 834 1008]] -0.2007 0.2521 7.54
2.3.5.7.11 2401/2400, 3136/3125, 8019/8000, 42592/42525 [359 569 834 1008 1242]] -0.1729 0.2322 6.95
2.3.5.7.11.13 729/728, 847/845, 1001/1000, 1716/1715, 3136/3125 [359 569 834 1008 1242 1328]] (359f) -0.2257 0.2426 7.26

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per Octave
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 58\359 193.87 28/25 Hemiwürschmidt
1 116\359 387.74 5/4 Würschmidt (5-limit)
1 149\359 498.05 4/3 Counterschismic