71edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 category edits (talk | contribs)
m Sort key
Eliora (talk | contribs)
No edit summary
Line 1: Line 1:
The '''71 equal temperament''' or '''71-EDO''' divides the octave into 71 equal parts of 16.901 cents each. It tempers out 20480/19683 and [[393216/390625]] in the [[5-limit]], 875/864, 4000/3969 and 1029/1024 in the [[7-limit]], 245/242 and [[100/99]] in the [[11-limit]], and 91/90 in the [[13-limit]]. In the 13-limit it supplies the optimal [[patent val]] for the 29&71 and 34&37 temperaments.
The '''71 equal temperament''' or '''71-EDO''' divides the octave into 71 equal parts of 16.901 cents each.  


71edo is the 20th [[prime EDO]].
71edo is the 20th [[prime EDO]].


{| class="wikitable center-all"
== Theory ==
|-
{{Harmonics in equal|71}}
|+ Approximation of [[prime interval]]s in 71 EDO
[[Category:Equal divisions of the octave|##]]
|-
It tempers out 20480/19683 and [[393216/390625]] in the [[5-limit]], 875/864, 4000/3969 and 1029/1024 in the [[7-limit]], 245/242 and [[100/99]] in the [[11-limit]], and 91/90 in the [[13-limit]]. In the 13-limit it supplies the optimal [[patent val]] for the 29&amp;71 and 34&amp;37 temperaments.<!-- 2-digit number -->
! colspan="2" | Prime number
! 3
! 5
! 7
! 11
! 13
! 17
! 19
! 23
|-
! rowspan="2" | Error
! absolute ([[cent|¢]])
| +7.90
| +2.42
| -5.45
| +6.43
| +4.54
| -3.55
| +6.71
| -2.92
|-
! [[Relative error|relative]] (%)
| +46.8
| +14.3
| -32.2
| +38.0
| +26.9
| -21.0
| +39.7
| -17.3
|-
! colspan="2" | Degree ([[octave reduction|reduced]])
| 113 (42)
| 165 (23)
| 199 (57)
| 246 (33)
| 263 (50)
| 290 (6)
| 302 (18)
| 321 (37)
|}


[[Category:Equal divisions of the octave|##]] <!-- 2-digit number -->
[[Category:Prime EDO]]
[[Category:Prime EDO]]

Revision as of 21:27, 16 September 2022

The 71 equal temperament or 71-EDO divides the octave into 71 equal parts of 16.901 cents each.

71edo is the 20th prime EDO.

Theory

Approximation of odd harmonics in 71edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +7.90 +2.42 -5.45 -1.09 +6.43 +4.54 -6.58 -3.55 +6.71 +2.46 -2.92
Relative (%) +46.8 +14.3 -32.2 -6.5 +38.0 +26.9 -38.9 -21.0 +39.7 +14.5 -17.3
Steps
(reduced)
113
(42)
165
(23)
199
(57)
225
(12)
246
(33)
263
(50)
277
(64)
290
(6)
302
(18)
312
(28)
321
(37)

It tempers out 20480/19683 and 393216/390625 in the 5-limit, 875/864, 4000/3969 and 1029/1024 in the 7-limit, 245/242 and 100/99 in the 11-limit, and 91/90 in the 13-limit. In the 13-limit it supplies the optimal patent val for the 29&71 and 34&37 temperaments.