164edo: Difference between revisions
Jump to navigation
Jump to search
Cleanup; +prime error table; +RTT table and rank-2 temperaments |
+infobox and improve intro |
||
Line 1: | Line 1: | ||
{{Infobox ET | |||
| Prime factorization = 2<sup>2</sup> × 41 | |||
| Step size = 7.31707¢ | |||
| Fifth = 96\164 (702.44¢) (→ [[41edo|24\41]]) | |||
| Semitones = 16:12 (117.07¢ : 87.80¢) | |||
| Consistency = 5 | |||
}} | |||
{{EDO intro|164}} | |||
164 = 4 × 41, with divisors 2, 4, 41, 82 | == Theory == | ||
In the 5-limit, 164edo tempers out the [[würschmidt comma]], 393216/390625, and supplies the [[optimal patent val]] for the [[würschmidt]] temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit the [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440. | |||
164 = 4 × 41, with divisors 2, 4, 41, 82. | |||
=== Prime harmonics === | === Prime harmonics === |
Revision as of 12:34, 26 August 2022
← 163edo | 164edo | 165edo → |
Theory
In the 5-limit, 164edo tempers out the würschmidt comma, 393216/390625, and supplies the optimal patent val for the würschmidt temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit the momentous temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.
164 = 4 × 41, with divisors 2, 4, 41, 82.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.48 | +1.49 | -2.97 | -2.54 | +0.94 | -2.52 | +2.49 | +0.99 | +2.13 | -3.57 |
Relative (%) | +0.0 | +6.6 | +20.4 | -40.6 | -34.7 | +12.8 | -34.4 | +34.0 | +13.6 | +29.1 | -48.8 | |
Steps (reduced) |
164 (0) |
260 (96) |
381 (53) |
460 (132) |
567 (75) |
607 (115) |
670 (14) |
697 (41) |
742 (86) |
797 (141) |
812 (156) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | 393216/390625, [24 -21 4⟩ | [⟨164 260 381]] | -0.316 | 0.262 | 3.58 |
2.3.5.13 | 676/675, 256000/255879, 393216/390625 | [⟨164 260 381 607]] | -0.300 | 0.229 | 3.13 |
Rank-2 temperaments
Periods per Otave |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 47\164 | 343.90 | 8000/6561 | Geb |
1 | 49\164 | 358.54 | 16/13 | Restles (164) |
1 | 53\164 | 387.80 | 5/4 | Würschmidt |
1 | 53\164 | 475.61 | 320/243 | Vulture |
1 | 69\164 | 504.88 | 104976/78125 | Countermeantone |
2 | 17\164 | 124.39 | 275/256 | Semivulture (164) |
4 | 68\164 (14\164) |
497.56 (102.44) |
4/3 (35/33) |
Undim (164deff) / unlit (164f) |
41 | 53\164 (1\164) |
387.80 (7.32) |
5/4 (32805/32768) |
Counterpyth |