164edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cleanup; +prime error table; +RTT table and rank-2 temperaments
+infobox and improve intro
Line 1: Line 1:
The ''164 equal division'' divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the [[würschmidt comma]], 393216/390625, and supplies the [[optimal patent val]] for the [[würschmidt]] temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit the [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.
{{Infobox ET
| Prime factorization = 2<sup>2</sup> × 41
| Step size = 7.31707¢
| Fifth = 96\164 (702.44¢) (→ [[41edo|24\41]])
| Semitones = 16:12 (117.07¢ : 87.80¢)
| Consistency = 5
}}
{{EDO intro|164}}


164 = 4 × 41, with divisors 2, 4, 41, 82
== Theory ==
In the 5-limit, 164edo tempers out the [[würschmidt comma]], 393216/390625, and supplies the [[optimal patent val]] for the [[würschmidt]] temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&amp;123 temperament, and the 13-limit the [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.
 
164 = 4 × 41, with divisors 2, 4, 41, 82.


=== Prime harmonics ===
=== Prime harmonics ===

Revision as of 12:34, 26 August 2022

← 163edo 164edo 165edo →
Prime factorization 22 × 41
Step size 7.31707 ¢ 
Fifth 96\164 (702.439 ¢) (→ 24\41)
Semitones (A1:m2) 16:12 (117.1 ¢ : 87.8 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

In the 5-limit, 164edo tempers out the würschmidt comma, 393216/390625, and supplies the optimal patent val for the würschmidt temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit the momentous temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.

164 = 4 × 41, with divisors 2, 4, 41, 82.

Prime harmonics

Approximation of prime harmonics in 164edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.48 +1.49 -2.97 -2.54 +0.94 -2.52 +2.49 +0.99 +2.13 -3.57
Relative (%) +0.0 +6.6 +20.4 -40.6 -34.7 +12.8 -34.4 +34.0 +13.6 +29.1 -48.8
Steps
(reduced)
164
(0)
260
(96)
381
(53)
460
(132)
567
(75)
607
(115)
670
(14)
697
(41)
742
(86)
797
(141)
812
(156)

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 393216/390625, [24 -21 4 [164 260 381]] -0.316 0.262 3.58
2.3.5.13 676/675, 256000/255879, 393216/390625 [164 260 381 607]] -0.300 0.229 3.13

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per Otave
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 47\164 343.90 8000/6561 Geb
1 49\164 358.54 16/13 Restles (164)
1 53\164 387.80 5/4 Würschmidt
1 53\164 475.61 320/243 Vulture
1 69\164 504.88 104976/78125 Countermeantone
2 17\164 124.39 275/256 Semivulture (164)
4 68\164
(14\164)
497.56
(102.44)
4/3
(35/33)
Undim (164deff) / unlit (164f)
41 53\164
(1\164)
387.80
(7.32)
5/4
(32805/32768)
Counterpyth