62edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 category edits (talk | contribs)
m Sort key
Update infobox
Line 1: Line 1:
{{Infobox ET
{{Infobox ET
| Prime factorization = 2 × 31
| Prime factorization = 2 × 31
| Step size = 19.355¢
| Step size = 19.3548¢
| Fifth = 36\62 (696.77¢)  (→ [[31edo|18\31]])
| Fifth = 36\62 (696.)  (→ [[31edo|18\31]])
| Major 2nd = 10\62 = 193.
| Semitones = 4:6 (77.4¢ : 116.1¢)
| Semitones = 4:6
| Consistency = 7
}}
}}
== Theory ==
== Theory ==

Revision as of 14:25, 20 August 2022

← 61edo 62edo 63edo →
Prime factorization 2 × 31
Step size 19.3548 ¢ 
Fifth 36\62 (696.774 ¢) (→ 18\31)
Semitones (A1:m2) 4:6 (77.42 ¢ : 116.1 ¢)
Consistency limit 7
Distinct consistency limit 7

Theory

62edo divides the octave into 62 equal parts of 19.35484 cents each.

62 = 2 × 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for gallium, semivalentine and hemimeantone temperaments.

Using the 35\62 generator, which leads to the 62 97 143 173] val, 62edo is also an excellent tuning for septimal mavila temperament; alternatively 62 97 143 172] supports hornbostel.

62 years is the amount of years in a leap week calendar cycle which corresponds to a year of 365 days 5 hours 48 minutes 23 seconds, meaning it is both a simple cycle for a calendar, and 62 being a multiple of 31 makes it a harmonically useful and playable cycle. The corresponding temperaments are 15 & 62 and 11 & 62.

Odd harmonics

Approximation of odd harmonics in 62edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -5.18 +0.78 -1.08 +8.99 -9.38 -8.27 -4.40 -8.18 -7.19 -6.26 -8.92
Relative (%) -26.8 +4.0 -5.6 +46.5 -48.5 -42.7 -22.7 -42.3 -37.2 -32.4 -46.1
Steps
(reduced)
98
(36)
144
(20)
174
(50)
197
(11)
214
(28)
229
(43)
242
(56)
253
(5)
263
(15)
272
(24)
280
(32)

Intervals

Armodue Nomenclature 8;3 Relation
  • Ɨ = Thick (1/8-tone up)
  • = Semisharp (1/4-tone up)
  • b = Flat (5/8-tone down)
  • = Node (sharp/flat blindspot 1/2-tone)
  • # = Sharp (5/8-tone up)
  • v = Semiflat (1/4-tone down)
  • = Thin (1/8-tone down)
# Cents Armodue notation Approximate intervals
0 0.000 1
1 19.355 90/89
2 38.710 1‡ (9#) 45/44
3 58.065 2b 30/29
4 77.419 1◊2 23/22
5 96.774 1# 37/35, 18/17, 19/18
6 116.129 2v 31/29, 15/14, 16/15
7 135.484 2⌐ 27/25, 13/12, 14/13
8 154.839 2 12/11
9 174.194 11/10
10 193.548 2‡ 19/17, 9/8, 10/9
11 212.903 3b 17/15, 9/8
12 232.258 2◊3 8/7
13 251.613 2# 15/13
14 270.968 3v 7/6
15 290.323 3⌐
16 309.677 3 6/5
17 329.032
18 348.387 3‡ 11/9
19 367.742 4b ·
20 387.097 3◊4 5/4
21 406.452 3#
22 425.806 4v (5b)
23 445.161 4⌐
24 464.516 4
25 483.871 4Ɨ (5v)
26 503.226 5⌐ (4‡) 4/3
27 522.581 5 ·
28 541.935
29 561.290 5‡ (4#)
30 580.645 6b 7/5
31 600.000 5◊6
32 619.355 5# 10/7
33 638.710 6v
34 658.065 6⌐
35 677.419 6 ·
36 696.774 3/2
37 716.129 6‡
38 735.484 7b
39 754.839 6◊7
40 774.194 6#
41 793.548 7v
42 812.903 7⌐ 8/5
43 832.258 7 ·
44 851.613 18/11
45 870.968 7‡
46 890.323 8b 5/3
47 909.677 7◊8
48 929.032 7# 12/7
49 948.387 8v 26/15
50 967.742 8⌐ 7/4
51 987.097 8 16/9
52 1006.452
53 1025.806 8‡
54 1045.161 9b
55 1064.516 8◊9
56 1083.871 8#
57 1103.226 9v (1b)
58 1122.581 9⌐
59 1141.936 9
60 1161.290 9Ɨ (1v)
61 1180.645 1⌐ (9‡)
62 1200.000 1