94edo: Difference between revisions
m Removing from Category:Theory using Cat-a-lot |
m Sort key |
||
Line 425: | Line 425: | ||
|19L 56s | |19L 56s | ||
|} | |} | ||
[[Category:94edo| ]] <!-- main article --> | [[Category:94edo| ]] <!-- main article --> | ||
[[Category:Equal divisions of the octave|##]] <!-- 2-digit number --> | |||
[[Category:Garibaldi]] | [[Category:Garibaldi]] | ||
[[Category:Marvel]] | [[Category:Marvel]] |
Revision as of 05:48, 2 July 2022
← 93edo | 94edo | 95edo → |
(semiconvergent)
The 94 equal divisions of the octave (94edo), or the 94(-tone) equal temperament (94tet, 94et) when viewed from a regular temperament perspective, results from dividing the octave into 94 equally-sized steps, where each step is about 12.8 cents.
Theory
94edo is a remarkable all-around utility tuning system, good from low prime limit to very high prime limit situations. It is the first edo to be consistent through the 23-odd-limit, and no other edo is so consistent until 282 and 311 make their appearance.
The list of 23-limit commas it tempers out is huge, but it is worth noting that it tempers out 32805/32768 and is thus a schismatic system, that it tempers out 225/224 and 385/384 and so is a marvel system, and that it also tempers out 3125/3087, 4000/3969, 5120/5103 and 540/539. It provides the optimal patent val for the rank-5 temperament tempering out 275/273, and for a number of other temperaments, such as isis.
94edo is an excellent EDO for Carlos Beta scale, since the difference between 5 steps of 94edo and 1 step of Carlos Beta is only -0.00314534 cents.
Prime harmonics
Script error: No such module "primes_in_edo".
Intervals
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [149 -94⟩ | [⟨94 149]] | -0.054 | 0.054 | 0.43 |
2.3.5 | 32805/32768, 9765625/9565938 | [⟨94 149 218]] | +0.442 | 0.704 | 5.52 |
2.3.5.7 | 225/224, 3125/3087, 118098/117649 | [⟨94 149 218 264]] | +0.208 | 0.732 | 5.74 |
2.3.5.7.11 | 225/224, 385/384, 1331/1323, 2200/2187 | [⟨94 149 218 264 325]] | +0.304 | 0.683 | 5.35 |
2.3.5.7.11.13 | 225/224, 275/273, 325/324, 385/384, 1331/1323 | [⟨94 149 218 264 325 348]] | +0.162 | 0.699 | 5.48 |
2.3.5.7.11.13.17 | 170/169, 225/224, 275/273, 289/288, 325/324, 385/384 | [⟨94 149 218 264 325 348 384]] | +0.238 | 0.674 | 5.28 |
2.3.5.7.11.13.17.19 | 170/169, 190/189, 225/224, 275/273, 289/288, 325/324, 385/384 | [⟨94 149 218 264 325 348 384 399]] | +0.323 | 0.669 | 5.24 |
2.3.5.7.11.13.17.19.23 | 170/169, 190/189, 209/208, 225/224, 275/273, 289/288, 300/299, 323/322 | [⟨94 149 218 264 325 348 384 399 425]] | +0.354 | 0.637 | 4.99 |
94et is lower in relative error than any previous equal temperaments in the 23-limit, and the next ET that does better in this subgroup is 193.
Rank-2 temperaments
Periods per octave |
Generator | Cents | Associated ratio |
Temperament |
---|---|---|---|---|
1 | 3\94 | 38.30 | 49/48 | Slender |
1 | 5\94 | 63.83 | 25/24 | Sycamore / betic |
1 | 11\94 | 140.43 | 243/224 | Tsaharuk / quanic |
1 | 13\94 | 165.96 | 11/10 | Tertiaschis |
1 | 19\94 | 242.55 | 147/128 | Septiquarter |
1 | 39\94 | 497.87 | 4/3 | Helmholtz / garibaldi / cassandra |
2 | 2\94 | 25.53 | 64/63 | Ketchup |
2 | 11\94 | 140.43 | 27/25 | Fifive |
2 | 30\94 | 382.98 | 5/4 | Wizard / gizzard |
2 | 34\94 | 434.04 | 9/7 | Pogo / supers |
2 | 43\94 | 548.94 | 11/8 | Kleischismic |
Below are some 23-limit temperaments supported by 94et. It might be noted that 94, a very good tuning for garibaldi temperament, shows us how to extend it to the 23-limit.
- 46&94 ⟨⟨ 8 30 -18 -4 -28 8 -24 2 … ]]
- 68&94 ⟨⟨ 20 28 2 -10 24 20 34 52 … ]]
- 53&94 ⟨⟨ 1 -8 -14 23 20 -46 -3 -35 … ]] (one garibaldi)
- 41&94 ⟨⟨ 1 -8 -14 23 20 48 -3 -35 … ]] (another garibaldi, only differing in the mappings of 17 and 23)
- 135&94 ⟨⟨ 1 -8 -14 23 20 48 -3 59 … ]] (another garibaldi)
- 130&94 ⟨⟨ 6 -48 10 -50 26 6 -18 -22 … ]] (a pogo extension)
- 58&94 ⟨⟨ 6 46 10 44 26 6 -18 -22 … ]] (a supers extension)
- 50&94 ⟨⟨ 24 -4 40 -12 10 24 22 6 … ]]
- 72&94 ⟨⟨ 12 -2 20 -6 52 12 -36 -44 … ]] (a gizzard extension)
- 80&94 ⟨⟨ 18 44 30 38 -16 18 40 28 … ]]
- 94 solo ⟨⟨ 12 -2 20 -6 -42 12 -36 -44 … ]] (a rank one temperament!)
Temperaments to which 94et can be detempered:
- Satin (94&311) ⟨⟨ 3 70 -42 69 -34 50 85 83 … ]]
- 94&422 ⟨⟨ 8 124 -18 90 -28 102 164 96 … ]]
Scales
Since 94edo has a step of 12.766 cents, it also allows one to use its MOS scales as circulating temperaments and is the first edo to allows one to use a Mohajira, Pajara or Miracle MOS scale a as circulating temperament[clarification needed].
Tones | Pattern | L:s |
---|---|---|
5 | 4L 1s | 19:18 |
6 | 4L 2s | 16:15 |
7 | 3L 4s | 14:13 |
8 | 6L 2s | 12:11 |
9 | 4L 5s | 11:10 |
10 | 4L 6s | 10:9 |
11 | 6L 5s | 9:8 |
12 | 10L 2s | 8:7 |
13 | 3L 10s | |
14 | 10L 4s | 7:6 |
15 | 4L 11s | |
16 | 14L 2s | 6:5 |
17 | 9L 8s | |
18 | 4L 14s | |
19 | 18L 1s | 5:4 |
20 | 14L 6s | |
21 | 10L 11s | |
22 | 6L 16s | |
23 | 2L 21s | |
24 | 22L 2s | 4:3 |
25 | 19L 6s | |
26 | 16L 10s | |
27 | 13L 14s | |
28 | 10L 18s | |
29 | 7L 22s | |
30 | 4L 22s | |
31 | 1L 30s | |
32 | 30L 2s | 3:2 |
33 | 28L 5s | |
34 | 26L 8s | |
35 | 24L 11s | |
36 | 22L 14s | |
37 | 20L 17s | |
38 | 18L 20s | |
39 | 16L 23s | |
40 | 14L 26s | |
41 | 13L 28s | |
42 | 10L 32s | |
43 | 8L 35s | |
44 | 6L 38s | |
45 | 4L 41s | |
46 | 2L 44s | |
47 | 47edo | equal |
48 | 46L 2s | 2:1 |
49 | 45L 4s | |
50 | 44L 6s | |
51 | 43L 8s | |
52 | 42L 10s | |
53 | 41L 12s | |
54 | 40L 14s | |
55 | 39L 16s | |
56 | 38L 18s | |
57 | 37L 20s | |
58 | 36L 22s | |
59 | 35L 24s | |
60 | 34L 26s | |
61 | 33L 28s | |
62 | 32L 30s | |
63 | 31L 32s | |
64 | 30L 34s | |
65 | 29L 36s | |
66 | 28L 38s | |
67 | 27L 40s | |
68 | 26L 42s | |
69 | 25L 44s | |
70 | 24L 46s | |
71 | 23L 48s | |
72 | 22L 50s | |
73 | 21L 52s | |
74 | 20L 54s | |
75 | 19L 56s |