Turkish maqam music temperaments: Difference between revisions
No edit summary |
Cleanup; fix header levels; improve categories |
||
Line 1: | Line 1: | ||
This is a collection some proposed temperaments for Turkish maqam music. | |||
[ | == Yarman I == | ||
[[Ozan Yarman]] has proposed defining the tuning of Turkish maqam music using a [[MOS]] of 79 or 80 notes out of 159. This means a generator of 2\159, which suggests the 19-limit mappings: | |||
The first mapping may be called 79&159 in terms of [[patent val]]s, and the second 80&159. In any event both mappings can be used inconsistently, and both temperaments are weak [[7-limit]] extensions of [[Orwellismic temperaments #Quartonic| | [{{val| 1 2 3 2 4 4 4 5 }}, {{val| 0 -33 -54 64 -43 -24 7 -60 }}] | ||
[{{val| 1 2 3 4 4 4 4 5 }}, {{val| 0 -33 -54 -95 -43 -24 7 -60 }}] | |||
The first mapping may be called 79&159 in terms of [[patent val]]s, and the second 80&159. In any event both mappings can be used inconsistently, and both temperaments are weak [[7-limit]] extensions of [[Orwellismic temperaments #Quartonic|quartonic]] temperament. A Pythagorean tuning, i.e. one with pure fifths, is also possible. | |||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 10976/10935, 244140625/243045684 | [[Comma list]]: 10976/10935, 244140625/243045684 | ||
[[Mapping]]: [{{val|1 2 3 4}}, {{val|0 -33 -54 -95}}] | [[Mapping]]: [{{val| 1 2 3 4 }}, {{val| 0 -33 -54 -95 }}] | ||
{{Multival|legend=1| 33 54 95 9 58 69}} | {{Multival|legend=1| 33 54 95 9 58 69}} | ||
Line 20: | Line 25: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4000/3993, 10976/10935 | Comma list: 3025/3024, 4000/3993, 10976/10935 | ||
Mapping: [{{val|1 2 3 4 4}}, {{val|0 -33 -54 -95 -43}}] | Mapping: [{{val| 1 2 3 4 4 }}, {{val| 0 -33 -54 -95 -43 }}] | ||
POTE generator: ~121/120 = 15.0658 | POTE generator: ~121/120 = 15.0658 | ||
Line 31: | Line 38: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 325/324, 364/363, 1001/1000, 10976/10935 | Comma list: 325/324, 364/363, 1001/1000, 10976/10935 | ||
Mapping: [{{val|1 2 3 4 4 4}}, {{val|0 -33 -54 -95 -43 -24}}] | Mapping: [{{val| 1 2 3 4 4 4 }}, {{val| 0 -33 -54 -95 -43 -24 }}] | ||
POTE generator: ~121/120 = 15.0752 | POTE generator: ~121/120 = 15.0752 | ||
Line 42: | Line 51: | ||
=== 17-limit === | === 17-limit === | ||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935 | Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935 | ||
Mapping: [{{val|1 2 3 4 4 4 4}}, {{val|0 -33 -54 -95 -43 -24 7}}] | Mapping: [{{val| 1 2 3 4 4 4 4 }}, {{val| 0 -33 -54 -95 -43 -24 7 }}] | ||
POTE generator: ~120/119 = 15.0715 | POTE generator: ~120/119 = 15.0715 | ||
Line 53: | Line 64: | ||
=== 19-limit === | === 19-limit === | ||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520 | Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520 | ||
Mapping: [{{val|1 2 3 4 4 4 4 5}}, {{val|0 -33 -54 -95 -43 -24 7 -60}}] | Mapping: [{{val| 1 2 3 4 4 4 4 5 }}, {{val| 0 -33 -54 -95 -43 -24 7 -60 }}] | ||
POTE generator: ~120/119 = 15.0713 | POTE generator: ~120/119 = 15.0713 | ||
Line 63: | Line 76: | ||
Badness: 0.023193 | Badness: 0.023193 | ||
== Yarman II | == Yarman II == | ||
Subgroup: 2.3.5.7 | |||
[[Comma list]]: 5359375/5308416, 390625000/387420489 | [[Comma list]]: 5359375/5308416, 390625000/387420489 | ||
[[Mapping]]: [{{val|1 2 3 2}}, {{val|0 -33 -54 64}}] | [[Mapping]]: [{{val| 1 2 3 2 }}, {{val| 0 -33 -54 64 }}] | ||
[[POTE generator]]: ~6144/6125 = 15.1062 | [[POTE generator]]: ~6144/6125 = 15.1062 | ||
Line 75: | Line 90: | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 385/384, 4000/3993, 78121827/77948684 | Comma list: 385/384, 4000/3993, 78121827/77948684 | ||
Mapping: [{{val|1 2 3 2 4}}, {{val|0 -33 -54 64 -43}}] | Mapping: [{{val| 1 2 3 2 4 }}, {{val| 0 -33 -54 64 -43 }}] | ||
POTE generator: ~121/120 = 15.1071 | POTE generator: ~121/120 = 15.1071 | ||
Line 86: | Line 103: | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 325/324, 385/384, 1575/1573, 85683/85184 | Comma list: 325/324, 385/384, 1575/1573, 85683/85184 | ||
Mapping: [{{val|1 2 3 2 4 4}}, {{val|0 -33 -54 64 -43 -24}}] | Mapping: [{{val| 1 2 3 2 4 4 }}, {{val| 0 -33 -54 64 -43 -24 }}] | ||
POTE generator: ~105/104 = 15.1071 | POTE generator: ~105/104 = 15.1071 | ||
Line 97: | Line 116: | ||
=== 17-limit === | === 17-limit === | ||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913 | Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913 | ||
Mapping: [{{val|1 2 3 2 4 4 4}}, {{val|0 -33 -54 64 -43 -24 7}}] | Mapping: [{{val| 1 2 3 2 4 4 4 }}, {{val| 0 -33 -54 64 -43 -24 7 }}] | ||
POTE generator: ~105/104 = 15.1037 | POTE generator: ~105/104 = 15.1037 | ||
Line 108: | Line 129: | ||
=== 19-limit === | === 19-limit === | ||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573 | Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573 | ||
Mapping: [{{val|1 2 3 2 4 4 4 5}}, {{val|0 -33 -54 64 -43 -24 7 -60}}] | Mapping: [{{val| 1 2 3 2 4 4 4 5 }}, {{val| 0 -33 -54 64 -43 -24 7 -60 }}] | ||
POTE generator: ~105/104 = 15.1013 | POTE generator: ~105/104 = 15.1013 | ||
Line 118: | Line 141: | ||
Badness: 0.038430 | Badness: 0.038430 | ||
= Karadeniz | == Karadeniz == | ||
K. E. Karadeniz proposed a 41 note MOS with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It's more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is: | {{See also| Schismatic family #Garibaldi }} | ||
K. E. Karadeniz proposed a 41-note MOS with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It's more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is: | |||
{{ | {{Multival| 2 -16 -28 5 40 -30 -50 1 56 -20 67 152 111 216 120 }} | ||
which in the 11-limit becomes: | which in the 11-limit becomes: | ||
{{ | {{Multival| 2 -16 -28 5 -30 -50 1 -20 67 111 }} | ||
It tempers out 3125/3087, 4000/3969, 243/242, 5120/5103, 225/224, and 3025/3024, and can also be called 41&106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators. | It tempers out 3125/3087, 4000/3969, 243/242, 5120/5103, 225/224, and 3025/3024, and can also be called 41&106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators. | ||
== 11-limit == | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
[[Comma list]]: 225/224, 243/242, 3125/3087 | [[Comma list]]: 225/224, 243/242, 3125/3087 | ||
[[Mapping]]: [{{val|1 1 7 11 2}}, {{val|0 2 -16 -28 5}}] | [[Mapping]]: [{{val| 1 1 7 11 2 }}, {{val| 0 2 -16 -28 5 }}] | ||
[[POTE generator]]: ~11/9 = 350.994 | [[POTE generator]]: ~11/9 = 350.994 | ||
Line 140: | Line 167: | ||
[[Badness]]: 0.041562 | [[Badness]]: 0.041562 | ||
== 13-limit == | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 225/224, 243/242, 325/324, 640/637 | Comma list: 225/224, 243/242, 325/324, 640/637 | ||
Mapping: [{{val|1 1 7 11 2 -8}}, {{val|0 2 -16 -28 5 40}}] | Mapping: [{{val| 1 1 7 11 2 -8 }}, {{val| 0 2 -16 -28 5 40 }}] | ||
POTE generator: ~11/9 = 351.014 | POTE generator: ~11/9 = 351.014 | ||
Line 151: | Line 180: | ||
Badness: 0.042564 | Badness: 0.042564 | ||
[[Category:Temperament]] | [[Category:Regular temperament theory]] | ||
[[Category:Temperament collection]] | |||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Revision as of 14:10, 8 January 2022
This is a collection some proposed temperaments for Turkish maqam music.
Yarman I
Ozan Yarman has proposed defining the tuning of Turkish maqam music using a MOS of 79 or 80 notes out of 159. This means a generator of 2\159, which suggests the 19-limit mappings:
[⟨1 2 3 2 4 4 4 5], ⟨0 -33 -54 64 -43 -24 7 -60]]
[⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
The first mapping may be called 79&159 in terms of patent vals, and the second 80&159. In any event both mappings can be used inconsistently, and both temperaments are weak 7-limit extensions of quartonic temperament. A Pythagorean tuning, i.e. one with pure fifths, is also possible.
Subgroup: 2.3.5.7
Comma list: 10976/10935, 244140625/243045684
Mapping: [⟨1 2 3 4], ⟨0 -33 -54 -95]]
Wedgie: ⟨⟨ 33 54 95 9 58 69 ]]
POTE generator: ~126/125 = 15.0667
Badness: 0.193315
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 10976/10935
Mapping: [⟨1 2 3 4 4], ⟨0 -33 -54 -95 -43]]
POTE generator: ~121/120 = 15.0658
Vals: Template:Val list
Badness: 0.049170
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4], ⟨0 -33 -54 -95 -43 -24]]
POTE generator: ~121/120 = 15.0752
Vals: Template:Val list
Badness: 0.040929
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4 4], ⟨0 -33 -54 -95 -43 -24 7]]
POTE generator: ~120/119 = 15.0715
Vals: Template:Val list
Badness: 0.031015
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520
Mapping: [⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
POTE generator: ~120/119 = 15.0713
Vals: Template:Val list
Badness: 0.023193
Yarman II
Subgroup: 2.3.5.7
Comma list: 5359375/5308416, 390625000/387420489
Mapping: [⟨1 2 3 2], ⟨0 -33 -54 64]]
POTE generator: ~6144/6125 = 15.1062
Badness: 0.655487
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 4000/3993, 78121827/77948684
Mapping: [⟨1 2 3 2 4], ⟨0 -33 -54 64 -43]]
POTE generator: ~121/120 = 15.1071
Vals: Template:Val list
Badness: 0.143477
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 1575/1573, 85683/85184
Mapping: [⟨1 2 3 2 4 4], ⟨0 -33 -54 64 -43 -24]]
POTE generator: ~105/104 = 15.1071
Vals: Template:Val list
Badness: 0.068150
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913
Mapping: [⟨1 2 3 2 4 4 4], ⟨0 -33 -54 64 -43 -24 7]]
POTE generator: ~105/104 = 15.1037
Vals: Template:Val list
Badness: 0.051019
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573
Mapping: [⟨1 2 3 2 4 4 4 5], ⟨0 -33 -54 64 -43 -24 7 -60]]
POTE generator: ~105/104 = 15.1013
Vals: Template:Val list
Badness: 0.038430
Karadeniz
K. E. Karadeniz proposed a 41-note MOS with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It's more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is:
⟨⟨ 2 -16 -28 5 40 -30 -50 1 56 -20 67 152 111 216 120 ]]
which in the 11-limit becomes:
⟨⟨ 2 -16 -28 5 -30 -50 1 -20 67 111 ]]
It tempers out 3125/3087, 4000/3969, 243/242, 5120/5103, 225/224, and 3025/3024, and can also be called 41&106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators.
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 243/242, 3125/3087
Mapping: [⟨1 1 7 11 2], ⟨0 2 -16 -28 5]]
POTE generator: ~11/9 = 350.994
Badness: 0.041562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 243/242, 325/324, 640/637
Mapping: [⟨1 1 7 11 2 -8], ⟨0 2 -16 -28 5 40]]
POTE generator: ~11/9 = 351.014
Vals: Template:Val list
Badness: 0.042564