328edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+RTT table
+rank-2 temperaments
Line 47: Line 47:
| 0.174
| 0.174
| 4.77
| 4.77
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 53\328
| 193.90
| 28/25
| [[Hemiwürschmidt]]
|-
| 1
| 117\328
| 428.05
| 2800/2187
| [[Osiris]]
|-
| 2
| 17\328
| 62.20
| 28/27
| [[Eagle]]
|-
| 2
| 111\328<br>(53\328)
| 406.10<br>(193.90)
| 495/392<br>(28/25)
| [[Semihemiwürschmidt]]
|-
| 8
| 136\328<br>(13\328)
| 497.56<br>(47.56)
| 4/3<br>(36/35)
| [[Twilight]]
|-
| 41
| 49\328<br>(1\328)
| 179.27<br>(3.66)
| 567/512<br>(352/351)
| [[Hemicounterpyth]]
|}
|}



Revision as of 15:58, 29 December 2021

The 328 equal divisions of the octave (328edo), or the 328(-tone) equal temperament (328tet, 328et) when viewed from a regular temperament perspective, divides the octave into 328 equal parts of 3.659 cents each.

Theory

328edo is enfactored in the 5-limit, with the same tuning as 164edo. It tempers out 2401/2400, 3136/3125, and 6144/6125 in the 7-limit, 9801/9800, 16384/16335 and 19712/19683 in the 11-limit, 676/675, 1001/1000, 1716/1715 and 2080/2079 in the 13-limit, 936/935, 1156/1155 and 2601/2600 in the 17-limit, so that it supports würschmidt and hemiwürschmidt, and provides the optimal patent val for 7-limit hemiwürschmidt, 11- and 13-limit semihemiwür, and 13-limit semiporwell.

328 factors into 23 × 41, with subset edos 2, 4, 8, 41, 82, and 164.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 3136/3125, 589824/588245 [328 520 762 921]] -0.298 0.229 6.27
2.3.5.7.11 2401/2400, 3136/3125, 9801/9800, 19712/19683 [328 520 762 921 1135]] -0.303 0.205 5.61
2.3.5.7.11.13 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 [328 520 762 921 1135 1214]] -0.295 0.188 5.15
2.3.5.7.11.13.17 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 [328 520 762 921 1135 1214 1341]] -0.293 0.174 4.77

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 53\328 193.90 28/25 Hemiwürschmidt
1 117\328 428.05 2800/2187 Osiris
2 17\328 62.20 28/27 Eagle
2 111\328
(53\328)
406.10
(193.90)
495/392
(28/25)
Semihemiwürschmidt
8 136\328
(13\328)
497.56
(47.56)
4/3
(36/35)
Twilight
41 49\328
(1\328)
179.27
(3.66)
567/512
(352/351)
Hemicounterpyth