328edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Expansion
+RTT table
Line 1: Line 1:
The '''328 equal divisions of the octave''' ('''328edo''') divides the octave into 328 [[equal]] parts of 3.659 [[cent]]s each.  
The '''328 equal divisions of the octave''' ('''328edo'''), or the '''328(-tone) equal temperament''' ('''328tet''', '''328et''') when viewed from a [[regular temperament]] perspective, divides the octave into 328 [[equal]] parts of 3.659 [[cent]]s each.  


== Theory ==
== Theory ==
Line 8: Line 8:
=== Prime harmonics ===
=== Prime harmonics ===
{{Primes in edo|328}}
{{Primes in edo|328}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5.7
| 2401/2400, 3136/3125, 589824/588245
| [{{val| 328 520 762 921 }}]
| -0.298
| 0.229
| 6.27
|-
| 2.3.5.7.11
| 2401/2400, 3136/3125, 9801/9800, 19712/19683
| [{{val| 328 520 762 921 1135 }}]
| -0.303
| 0.205
| 5.61
|-
| 2.3.5.7.11.13
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647
| [{{val| 328 520 762 921 1135 1214 }}]
| -0.295
| 0.188
| 5.15
|-
| 2.3.5.7.11.13.17
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125
| [{{val| 328 520 762 921 1135 1214 1341 }}]
| -0.293
| 0.174
| 4.77
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:Hemiwürschmidt]]
[[Category:Hemiwürschmidt]]
[[Category:Semiporwell]]
[[Category:Semiporwell]]

Revision as of 16:44, 4 December 2021

The 328 equal divisions of the octave (328edo), or the 328(-tone) equal temperament (328tet, 328et) when viewed from a regular temperament perspective, divides the octave into 328 equal parts of 3.659 cents each.

Theory

328edo is enfactored in the 5-limit, with the same tuning as 164edo. It tempers out 2401/2400, 3136/3125, and 6144/6125 in the 7-limit, 9801/9800, 16384/16335 and 19712/19683 in the 11-limit, 676/675, 1001/1000, 1716/1715 and 2080/2079 in the 13-limit, 936/935, 1156/1155 and 2601/2600 in the 17-limit, so that it supports würschmidt and hemiwürschmidt, and provides the optimal patent val for 7-limit hemiwürschmidt, 11- and 13-limit semihemiwür, and 13-limit semiporwell.

328 factors into 23 × 41, with subset edos 2, 4, 8, 41, 82, and 164.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 3136/3125, 589824/588245 [328 520 762 921]] -0.298 0.229 6.27
2.3.5.7.11 2401/2400, 3136/3125, 9801/9800, 19712/19683 [328 520 762 921 1135]] -0.303 0.205 5.61
2.3.5.7.11.13 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 [328 520 762 921 1135 1214]] -0.295 0.188 5.15
2.3.5.7.11.13.17 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 [328 520 762 921 1135 1214 1341]] -0.293 0.174 4.77