40ed10: Difference between revisions
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The '''division of the 10th harmonic into 40 equal parts''' is related to [[12edo]], but with 10/1 instead of 2/1 being just. The step size (99.657843 [[cent]]s) of this [[equal-step tuning]] is very close to 1\12 (one step of 12 EDO). | The '''division of the 10th harmonic into 40 equal parts''' (40ED10) is related to [[12edo|12EDO]], but with 10/1 instead of 2/1 being just. The step size (99.657843 [[cent]]s) of this [[equal-step tuning]] is very close to 1\12 (one step of 12 EDO). | ||
It is possible to call this division a form of '''decibel tuning''' or '''kilobyte tuning''', as | It is possible to call this division a form of '''decibel tuning''' or '''kilobyte tuning''', as | ||
Line 12: | Line 12: | ||
== Theory == | == Theory == | ||
Since | Since 40ED10 has relations to the proximity of 1024 to 1000, just like 12EDO it tempers out the lesser diesis of [[128/125]]. However in this situation the tempering has a different interpretation, namely that "in favor of 1000". | ||
=== Interval === | |||
{| class="wikitable" | |||
|- | |||
! | degree | |||
! | cents value | |||
! | corresponding <br>JI intervals | |||
! | comments | |||
|- | |||
| | 0 | |||
| | 0.0000 | |||
| | '''exact [[1/1]]''' | |||
| | | |||
|- | |||
| | 1 | |||
| | 99.6578 | |||
| | [[18/17]] | |||
| | | |||
|- | |||
| | 2 | |||
| | 199.3157 | |||
| | | |||
| | | |||
|- | |||
| | 3 | |||
| | 298.9735 | |||
| | [[19/16]] | |||
| | | |||
|- | |||
| | 4 | |||
| | 398.6314 | |||
| | | |||
| | | |||
|- | |||
| | 5 | |||
| | 498.2892 | |||
| | [[4/3]] | |||
| | | |||
|- | |||
| | 6 | |||
| | 597.9471 | |||
| | [[24/17]] | |||
| | | |||
|- | |||
| | 7 | |||
| | 697.6049 | |||
| | | |||
| | | |||
|- | |||
| | 8 | |||
| | 797.2627 | |||
| | | |||
| | | |||
|- | |||
| | 9 | |||
| | 896.9206 | |||
| | | |||
| | | |||
|- | |||
| | 10 | |||
| | 996.5784 | |||
| | [[16/9]] | |||
| | | |||
|- | |||
| | 11 | |||
| | 1096.2363 | |||
| | [[32/17]] | |||
| | | |||
|- | |||
| | 12 | |||
| | 1195.8941 | |||
| | | |||
| | compressed [[octave]] | |||
|- | |||
| | 13 | |||
| | 1295.5520 | |||
| | | |||
| | | |||
|- | |||
| | 14 | |||
| | 1395.2098 | |||
| | [[28/25|56/25]] | |||
| | | |||
|- | |||
| | 15 | |||
| | 1494.8676 | |||
| | | |||
| | | |||
|- | |||
| | 16 | |||
| | 1594.5255 | |||
| | | |||
| | | |||
|- | |||
| | 17 | |||
| | 1694.1833 | |||
| | | |||
| | | |||
|- | |||
| | 18 | |||
| | 1793.8412 | |||
| | | |||
| | | |||
|- | |||
| | 19 | |||
| | 1893.4990 | |||
| | [[112/75|224/75]] | |||
| | | |||
|- | |||
| | 20 | |||
| | 1993.1569 | |||
| | | |||
| | | |||
|- | |||
| | 21 | |||
| | 2092.8147 | |||
| | 375/112 | |||
| | | |||
|- | |||
| | 22 | |||
| | 2192.4725 | |||
| | | |||
| | | |||
|- | |||
| | 23 | |||
| | 2292.1304 | |||
| | | |||
| | | |||
|- | |||
| | 24 | |||
| | 2391.7882 | |||
| | | |||
| | | |||
|- | |||
| | 25 | |||
| | 2491.4461 | |||
| | | |||
| | | |||
|- | |||
| | 26 | |||
| | 2591.1039 | |||
| | 125/28 | |||
| | | |||
|- | |||
| | 27 | |||
| | 2690.7618 | |||
| | | |||
| | | |||
|- | |||
| | 28 | |||
| | 2790.4196 | |||
| | | |||
| | | |||
|- | |||
| | 29 | |||
| | 2890.0774 | |||
| | 85/16 | |||
| | | |||
|- | |||
| | 30 | |||
| | 2989.7353 | |||
| | [[45/32|45/8]] | |||
| | | |||
|- | |||
| | 31 | |||
| | 3089.3931 | |||
| | | |||
| | | |||
|- | |||
| | 32 | |||
| | 3189.0510 | |||
| | | |||
| | | |||
|- | |||
| | 33 | |||
| | 3288.7088 | |||
| | | |||
| | | |||
|- | |||
| | 34 | |||
| | 3388.3667 | |||
| | 85/12 | |||
| | | |||
|- | |||
| | 35 | |||
| | 3488.0245 | |||
| | [[15/2]] | |||
| | | |||
|- | |||
| | 36 | |||
| | 3587.6823 | |||
| | | |||
| | | |||
|- | |||
| | 37 | |||
| | 3687.3402 | |||
| | | |||
| | | |||
|- | |||
| | 38 | |||
| | 3786.9980 | |||
| | | |||
| | | |||
|- | |||
| | 39 | |||
| | 3886.6559 | |||
| | 85/9 | |||
| | | |||
|- | |||
| | 40 | |||
| | 3986.3137 | |||
| | '''exact [[10/1]]''' | |||
| | | |||
|} | |||
[[Category:Equal-step tuning]] | [[Category:Equal-step tuning]] | ||
[[Category:Ed10]] |
Revision as of 22:04, 5 September 2021
The division of the 10th harmonic into 40 equal parts (40ED10) is related to 12EDO, but with 10/1 instead of 2/1 being just. The step size (99.657843 cents) of this equal-step tuning is very close to 1\12 (one step of 12 EDO).
It is possible to call this division a form of decibel tuning or kilobyte tuning, as
[math]\displaystyle{ 10^{\frac{1}{10}} \approx 2^{\frac{1}{3}} = 1.2589254 \approx 1.2599210 }[/math];
which lies in the basis of the definition of decibel. In addition, as a consequence of the previous formula,
[math]\displaystyle{ 2^{10} \approx 10^{3} = 1024 \approx 1000 }[/math];
which lies in the basis of using a "decimal" prefix to an otherwise binary unit of information. The octave, which is 12\40 = 3\10, is compressed by about 4.1 cents.
Theory
Since 40ED10 has relations to the proximity of 1024 to 1000, just like 12EDO it tempers out the lesser diesis of 128/125. However in this situation the tempering has a different interpretation, namely that "in favor of 1000".
Interval
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 99.6578 | 18/17 | |
2 | 199.3157 | ||
3 | 298.9735 | 19/16 | |
4 | 398.6314 | ||
5 | 498.2892 | 4/3 | |
6 | 597.9471 | 24/17 | |
7 | 697.6049 | ||
8 | 797.2627 | ||
9 | 896.9206 | ||
10 | 996.5784 | 16/9 | |
11 | 1096.2363 | 32/17 | |
12 | 1195.8941 | compressed octave | |
13 | 1295.5520 | ||
14 | 1395.2098 | 56/25 | |
15 | 1494.8676 | ||
16 | 1594.5255 | ||
17 | 1694.1833 | ||
18 | 1793.8412 | ||
19 | 1893.4990 | 224/75 | |
20 | 1993.1569 | ||
21 | 2092.8147 | 375/112 | |
22 | 2192.4725 | ||
23 | 2292.1304 | ||
24 | 2391.7882 | ||
25 | 2491.4461 | ||
26 | 2591.1039 | 125/28 | |
27 | 2690.7618 | ||
28 | 2790.4196 | ||
29 | 2890.0774 | 85/16 | |
30 | 2989.7353 | 45/8 | |
31 | 3089.3931 | ||
32 | 3189.0510 | ||
33 | 3288.7088 | ||
34 | 3388.3667 | 85/12 | |
35 | 3488.0245 | 15/2 | |
36 | 3587.6823 | ||
37 | 3687.3402 | ||
38 | 3786.9980 | ||
39 | 3886.6559 | 85/9 | |
40 | 3986.3137 | exact 10/1 |